
www.manaraa.com

NPS-SP-95-002

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DESIGN AND IMPLEMENTATION OF THE PANSAT
SOFTWARE GROUNDSTATION

by

Jens Bartschat

Sentember 1995

Approved for public release; distribution is unlimited

Prepared for: Unversitaet der Bundeswehr Muenchen
85579 Neubiberg, Germany

FedDocs
D 208.14/2
NPS-SP-95-002

www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY

Mo^i^STGRADUATE SCHOOLMONTEREY CA 93943-5101

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral M.J. Evans R. Elster
Superintendent Provost

This report was prepared for Unversitaet der Bundeswehr Muenchen,
85579 Neubiberg, Germany.

Reproduction of all or part of this document is authorized.

The report was prepared by:

www.manaraa.com

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection ot information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of

this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

September 1995
3. REPORT TYPE

Technical Report

4. TITLE AND SUBTITLE

DESIGN AND IMPLEMENTATION OF THE PANSAT SOFTWARE
GROUNDSTATION WITH A WINDOWS- AND WINDOWS NT BASED

C++ DEVELOPMENT SYSTEM ON AN IBM-COMPATIBLE PC

6. AUTHOR(S) Jens Bartschat

5 FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

PERFORMING ORGANIZATION
REPORT NUMBER

NPS-SP-95-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Unversitaet der Bundeswehr Muenchen
85579 Neubiberg , GERMANY

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the US Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The PANSAT Software Groundstation enables a user to command and control PANSAT once it is in

space, provided he has an IBM-compatible and Windows® or Windows NT® capable computer with a serial

interface and the necessary additional hardware. Via the implemented PANSAT Command Language (PCL),

the user will be able to access all PANSAT commands, thus control it, gather telemetry data or use its mail

storing capability in an easy-to-use manner typical for Windows®-based applications.

14. SUBJECT TERMS

Design and implementation of the PANSAT software

groundstation on an IBM-compatible PC
15. NUMBER OF PAGES 159

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-

5500
Standard Form 298

(Rev. 2-89)

Approved for public release; distribution is unlimited.

www.manaraa.com

www.manaraa.com

ACKNOWLEDGMENT

Numerous individuals helped and assisted me in putting this thesis together.

During most of the time, those "little things" helped me most, just small advice or a hint.

The time working with the people of the entire Space Systems Academic Group was a

great experience for me. I would not want to miss it - thanks, folks!

However, a few of the above deserve special mention. Without the great effort of

Professor Liess and Professor Panholzer I would not have had the opportunity of writing

this thesis at the Naval Postgraduate School in Monterey. Professor Panholzer also

introduced me to the staff of the Space Systems Academic Group, and from the very first

minute I felt myself "at home". Especially Jim Horning helped me in settling into the

working environment, and we spent many hours discussing the details of my thesis.

Last, but not at all least, I like to thank my girlfriend Marion for staying with me

during a long period of time here in Monterey. She provided me with love,

encouragement and sometimes distraction in that special manner that makes a thesis

writer's work even more productive.

www.manaraa.com

www.manaraa.com

ABSTRACT

The Naval Postgraduate School's (NPS) Space Systems Academic Group (SSAG)

is currently developing the Petite Amateur Navy Satellite (PANSAT). This thesis

describes the PANSAT Software Groundstation development and design. This covers

requirements that led to various design decisions as well as the use of the Groundstation

Software and the programming background necessary to provide detailed information of

how to enhance this software in the future. Furthermore, it can be considered as a brief

manual for the development of software other than the Groundstation with the high-level

programming language C++.

The Groundstation Software is designed to run under Windows 3.x® or

Windows NT® operating systems on an IBM-compatible PC. It allows an easy visual

access to all command and control features incorporated in the PANSAT design via the

PANSAT Command Language (PCL). The software design provides full control over the

additional hardware necessary to physically establish a connection to PANSAT, by

plugging it into the serial port of the PC running the Software Groundstation.

The data structures and the visual controls are designed to meet the requirements

of usability, flexibility and compatibility to third-party software. In addition, the use of

data encapsulation as a typical feature of the programming language C++ ensures

readable source code.

m

www.manaraa.com

www.manaraa.com

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THE PANSAT PROJECT 1

B. THE PANSAT GROUNDSTATION 2

C. OVERVIEW 3

II. GROUNDSTATION REQUIREMENTS 4

A. THE GROUNDSTATION AS A COMPUTER SOFTWARE 4

B. SOFTWARE AND DEVELOPMENT CONSTRAINTS 6

C. THE DEVELOPMENT ENVIRONMENT 8

III. GROUNDSTATION USER'S MANUAL 9

A. THE "SCRIPTS" DIALOG 9

B. THE "TELEMETRY" DIALOG 11

C. THE "MAIL" DIALOG 12

D. THE "MEMORY" DIALOG 14

E. THE "LOW-LEVEL" DIALOG 16

F. THE "HIGH-LEVEL" DIALOG 18

G. THE "FILES" DIALOG 20

H. THE "TASK" DIALOG 21

www.manaraa.com

I. THE EMBEDDING MACRO/STATUS DIALOG 23

J. THE LOGIN AND PREFERENCES DIALOG 24

IV. DEVELOPMENT PREPARATION MANUAL 26

A. INSTALLATIONS AND CONFIGURATIONS 26

1. Basic Installations 26

2. Connecting the Compiler to the Resource Workshop 27

3. Connecting the Compiler and the Application to WinWidgets 27

4. Connecting the Resource Workshop to WinWidgets 29

B. PROGRAMMING WITH THE MICROSOFT VISUAL C++ COMPILER 29

1. General 30

2. Microsoft Foundation Classes (MFC) 31

3. The Document-Frame-View Architecture 32

4. Project Files 34

C. TOOL'S REFERENCE 35

1 . Using AppWizard to Create an Application Skeleton 35

2. Using ClassWizard to Change Your Application 36

3. Using the Resource Workshop Dialog Editor 39

4. Using the Online Help and the Contents Browser 44

V. PROGRAMMER'S REFERENCE 46

A. THE GROUNDSTATION DOCUMENT 46

1 . Classes and Structures 46

2. The PCL Output Structures 47

a. The macro/command relationship 48

b. The Contents of the Program Command Database 52

c. The Implementation of the Output Structures 53

3. The PCL Input Structure 55

4. The Evaluation Process 56

VI

www.manaraa.com

B. PROGRAMMING TECHNIQUES USED FOR THE GROUNDSTATION 57

1. Using WinWidgets' Tabbed Dialog 57

2. Using WinWidgets' HotLink 60

3. Using *.ini Files 61

4. MFC Class C String 65

5. MFC Class CPtrArray and its Neighbors 65

C.BUG REPORT 66

1. Mysterious Syntax Errors While Using #define's 67

2. Access Violations Due to Bad Memory 67

3. AppWizard Does Not Recognize Your Classes 69

4. Globally Defined Variables Are Not Recognized 69

VI. CONCLUSION 71

VII. LIST OF REFERENCES 72

VIII. APPENDIX 74

A. APPLICATION SOURCECODE 74

B. DIALOG SOURCECODE 116

C. MISCELLANEOUS 125

IX. INITIAL DISTRIBUTION LIST 147

vn

www.manaraa.com

www.manaraa.com

I. INTRODUCTION

A. THE PANSAT PROJECT

The PANSAT project was initiated in 1989 as an educational program for student

officers at the Naval Postgraduate School's (NPS) Space Systems Academic Group

(SSAG). It was intended to prepare postgraduate students for space related tasks as well

as to develop a cadre of engineers capable of developing and actually producing space

qualified hardware.

PANSAT is a small satellite for digital store-and-forward communications in the

amateur frequency band. It features a direct sequence spread spectrum differentially

coded, binary phase shift keyed (BPSK) communication system at an operating frequency

of 436.5MHz. This adds a new dimension to amateur radio communication, as spread

spectrum capability has never been used before in that context. The store-and-forward

capability will allow amateur radio operators to send or receive messages during several

short communication windows every day, each 6 to 10 minutes of length.

The whole PANSAT structure weighs approximately 150 pounds, has a diameter

of about 1 9 inches, and is being designed to launch as a secondary payload from the

Space Shuttle as part of the Hitchhiker Program. It is made of aluminium 6061-T6 and

built around a main load bearing cylinder connected to the lower equipment plate; a 26-

sided polyhedron was the chosen configuration to maximize solar panel area and thus

power generation. PANSAT will be unstabilized and tumble freely, once put into space

with a Get Away Special (GAS) container. Its operational life is expected to be two years

at an inclination between 28.5° and 51.6° and an altitude between 160 and 220 nautical

miles.

www.manaraa.com

B. THE PANSAT GROUNDSTATION

Once PANSAT is in space, the only means to access it is via radio control. This

shall include both commanding and gathering telemetry. Because PANSAT' s hardware

capabilities require commanding structure of a relatively high complexity, the problem of

dealing with the correct sequence of all possible commands, their correct timing as well

as telemetry storage and -maintenance becomes apparent. The most convenient way for

PANSAT users would then require some kind of maintenance tool or, in terms of space

technology, groundstation which would encapsulate this functionality in one entity.

Most commonly, satellite groundstations consist of three parts (Figure 1): one or

more computers, the necessary additional hardware for radio communications, and the

software serving as a connection between those two parts. The software part of such a

satellite groundstation is the scope of this thesis.

(4)

Figure 1: Parts of a Satellite Groundstation and Satellite:

A PC (1), the addditional hardware for radio

communication (2), the Groundstation Software (3) and the

satellite to communicate to (4).

www.manaraa.com

The term Software Groundstation will be used in the following, referring to the

software part of a satellite groundstation. This is done to indicate that the software is a

major and separable part of the whole groundstation concept, and to distinguish it from

the hardware part.

The Software Groundstation is the only interface between users on earth and the

spacecraft. As with most of all user interfaces, they should be adapted to human needs

rather than human beings to user interfaces. Because many technical vehicles (such as

satellites) are becoming more complex as they are becoming more powerful, the design of

a satellite-to-human software interface likewise is more important. Whenever human

interaction is needed for such vehicles, user friendliness should be a major concern

before, while, and after the development phase of the software user interface. A user

friendly design does not only make working with this interface more convenient, but also

increases security and performance.

C. OVERVIEW

The following four chapters ''Groundstation Requirements", "Groundstation

User's Manual", "Development Preparation Manual" and "Programmer's Reference"

present the reader with a climax in detailed description. The first two chapters explain

necessary background information for users of the groundstation, whereas the last two

chapters prepare a software developer to cope with the problem of enhancing the

groundstation software.

For reference purposes, the current source code of the groundstation is provided in

the Appendix.

www.manaraa.com

II. GROUNDSTATION REQUIREMENTS

This chapter provides the information which finally led to the multiple decisions

concerning the development and design of a suitable PANSAT Software Groundstation.

The first section explains the need for a computer based (software) groundstation. The

second section discusses the more detailed aspects of the groundstation based on those

decisions. Finally, the third section allows a closer inspection on the facts that led to the

decisions made concerning the software development environment of the PANSAT

Groundstation.

A. THE GROUNDSTATION AS A COMPUTER SOFTWARE

inexpensive

flexible,

adaptable

easy

to

use

access all

PANSAT
functionality

-o

V V V
PANSAT
Software

Groundstation

easily

reproducable

widespread

use

Figure 2: Advantages of a Software Groundstation

Programming a computer requires detailed knowledge of the development tools,

including a programming language as well as the programming and hardware

environment. The lack of this knowledge often prevents one from the use of up-to-date

software tools and computers; even though a software implementation in such an

www.manaraa.com

environment would be most advantageous. The advantages of a Software Groundstation

instead of other non software-based solution become apparent when just enumerating the

advantages of software in general:

Software is flexible by definition: it is designed to be changed and adapted to a large

variety of tasks. Whatever is imaginable to do with a specific hardware (computer,

additional hardware) could be done by programming it.

Once a basic knowledge about programming is established, software development can

go on relatively fast and cheap. Besides a standard PC and the development package,

there is hardly any need for cost-intensive additional products. However,

sophisticated software tools can be very expensive, and the time spent learning to

program is a cost factor too. But normally the benefits of a software implementation

will be worth the money and time spent for it, and sometimes there is not an

alternative.

•

•

The flexibility of software applications gives the opportunity to program them user

friendly, especially with a graphical oriented operating system such as Windows or

Windows NT.

Use of a PC as a runtime platform ensures widespread use of the software that can run

on it, thus making it attractive to all people who want to solve a specific problem with

this software. Also, many people own a PC.

www.manaraa.com

B. SOFTWARE AND DEVELOPMENT CONSTRAINTS

graphical

oriented

environment

high-level

programming

language

SLSL
Windows

-T> or Windows

NT OS

7T

C++ as

-£> development

language

AAA

third-party

code

compatible

widespread

use

possible

inexpensive

4_az

£> PC-based

PANSAT
Software

Groundstation

manuals/

references

available

Figure 3: Software and Development Environment Constraints Leading to

the Design of the PANSAT Software Groundstation

The software tools to be used when programming the PANSAT Software

Groundstation were undetermined in the beginning. However, some of the requirements

forced a decision:

www.manaraa.com

• Existing software such as the operating system intended to be used onboard PANSAT
was already available. It was written in C, so the programming language used for the

Software Groundstation should be C (or C++, which incorporates C) also. However,

this was not a must.

• The programming language should be high-level and structurized, and it should be

common for multipurpose tasks. Furthermore, it should allow a GUI method for user

interaction; that is, a huge choice of visual controls. These constraints limited the

amount of suitable languages to Object Pascal (as used in Borland's Delphi) and

C+ + (as used in Microsoft Visual C+ + and Borland C++). Delphi offered a large

variety of visual controls, whereas the C++ compilers stuck to somewhat standard

controls. But because of the proven performance and the long period of presence on

the market, C++ was chosen.

• The operating system used for development should be the same for the runtime

application version. This ensures data structure integrity and allows visual design for

the application GUI. It also minimizes software incompatibility. The best and/or most

commonly used operating systems enabling GUI programming are the Macintosh

Finder and Microsoft Windows 3.x or Windows NT. Because of the common market

acceptance for Windows as well as being the most common platform within the

SSAG, this operating system was chosen.

• The hardware development platform should normally be the same platform as for

running an application (in contrary to cross-platform development). This ensures

hardware compatibility and minimizes software incompatibility between development

and runtime application versions. Furthermore, a PC-based platform would be

recommendable because of the widespread use of Intel®-80x86 processor series

based computers.

The first steps in designing a Software Groundstation were done in accordance to

[Ref. 15, chapter IX. Ground Station Software Design]. This description, however,

involved too little detail to be useful for the actual design. In addition, the PANSAT

Command Language (PCL) [Ref. 16] was subject to development after [Ref. 15] was

written, and development software tools increased their capabilities during that time. So it

turned out that almost none of the information in [Ref. 15] were suitable for the PANSAT

Software Groundstation.

www.manaraa.com

C. THE DEVELOPMENT ENVIRONMENT

For the development of the PANSAT Software Groundstation (furthermore

referred to as "groundstation") several aspects have been taken into consideration. First,

the groundstation should be a PC-based application using the Windows or Windows NT

graphical user interface (GUI). Second, it should be written in a language familiar to the

Space Systems Academic Group, so that it could be changed or enhanced once the core

has been programmed. Third, this language should allow compatible access to the third-

party developments, such as SCOS .

The choice was quite easy: the programming language should be C or C++. This

decision determined the compiler: Microsoft Visual C++ Compiler (furthermore referred

to as "MSVC"). There were other C++ compilers on the market, but as the author was

familiar with this specific one, MSVC was chosen. The new version of MSVC runs only

under Windows NT; thus, the development platform was determined.

The GUI specifications for the groundstation needed a more advanced design than

MSVC was capable to offer in the first place. However, MSVC's capabilities could be

enhanced by an additional interface programming package. WinWidgets/32 (WW) was

chosen, especially because of its so-called "tabbed dialog" feature (a GUI feature which

simplifies the display of multiple dialogs). In order to make MSVC work with WW,

another dialog editor had to be purchased: Borland's Resource Workshop (RW). The

MSVC built-in AppStudio dialog editor does not feature the ability to graphically

manipulate a GUI in connection with WW, wheras RW offered this possibility.

SCOS: Spacecraft Operating System; the operating system used for PANSAT

www.manaraa.com

III. GROUNDSTATION USER'S MANUAL

This manual describes how the PANSAT Software Groundstation actually works.

It consists of nine subsections, each representing one dialog of the groundstation which

automatically appears when you start the application. Each of those dialogs represents

one part of the PANSAT Command Language (PCL) with similar functionality. All eight

dialogs (and a remaining embedding parent dialog) offer full access to all commands

available with PCL. Finally, a short description of some auxiliary dialogs is presented.

This manual assumes that you are already familiar with using a graphical oriented

operating system such as Windows or Windows NT.

A. THE "SCRIPTS" DIALOG

Scripts [Telemetry | Mail j Memory
|

Low-Level | High-Level j Files
f

Tasks

sO Normal Editing

O Express Editing

O Script

O Macro'

|drop_

list_command_buffer
directory

charge_batt_b
discharge_batt_a
(next)

Q
Insert from Edit Line Cut to Edit Line

Zl

Figure 4: The Scripts Dialog

I

Erase Edit Line
|

add_command
add task

t

boot_rom (-) ~V
charge_batt_a
charge battb V^^^^
delete command
delete file

delete task

directory

discharge_batt_a
discharqe_batt_b

get_file

io read
io write

list command buffer

list tasks

lockout users

pcbr
ocbw +

Insert Edit

Load..9
Save

Save As...

New

Delete

www.manaraa.com

Within this Scripts dialog (Figure 4), the user is able to load, write, create and

edit scripts and macros. Both may consist of one or more commands. A command is

every order you give either to PANSAT or the Groundstation Software. A macro is one

or more subsequent commands which are intended to be sent to PANSAT, that is, one or

more command which is part of the PANSAT Command Language PCL. A script is one

or more subsequent commands; this includes both PCL and language items not intended

to be sent to PANSAT, but to control the Groundstation Software itself. Refer to Figure 4

for a description of the features of this dialog:

1

.

This Listbox represents the current Macro. It contains all commands in the execution

sequence. All new commands are inserted before the highlighted command
(drop_users in this case). When highlighted, the (next) entry allows insertion at

the end of the Macro.

2. This Listbox shows all available PCL commands, or, in case of Script editing (5),

all available commands.

3. These two Editfields show the command (left, drop_users in this case) and its

parameters, if applicable (right, void in this case). The Erase Edit Line Button

on the far right clears both Editfields. If a command takes parameters, a click in the

right Editfield causes the specific dialog to appear in which the parameters of the

command (left Editfield) can be edited. This will be one of the following dialogs:

Mail, Memory, Low-Level, High-Level, Files or Task dialog. They are put into

a special mode which allows only for setting or editing parameters of the command in

the left Editfield.

4. These two Radiobuttons determine the edit mode. They change the reaction on mouse

clicks in area 1 and 2. The four buttons in area 6 indicate which mouse click produces

which reaction, that is, left or right mousebutton. Refer to area 6 for explanation.

5

.

These two Radiobuttons determine whether all commands are to be shown in areas 1

,

2 and 3 (Script) , or only PCL commands are to be shown (Macro).

6. These four Pushbuttons allow Macro editing. Insert from Edit Line inserts the

contents of 3 before the highlighted command listed in 1. Cut to Edit Line

deletes the highlighted command line in 1 and pastes it into 3. Insert pastes the

highlighted command of 2 in both 1 and 3, but only in case the command does not

require parameters. However, if it requires parameters, the highlighted command in 2

10

www.manaraa.com

is pasted only in 3. By pressing Edit, the highlighted command in 2 is pasted only to

3, regardless of its parameter requirements. In Express Editing mode, the

position of the Pushbuttons below the Listboxes 1 and 2 indicates which mousebutton

(left or right) has to be clicked in 1 or 2 to obtain the same reaction as when clicking

on one of the Pushbuttons. For example, click left in 1 to insert from Edit
Line, click right in 1 to Cut to Edit Line. Same with 2: click left in 2 to

Insert, or click right in 2 to Edit.

7. These five Pushbuttons allow loading, saving and creating Macros as well as deleting

Macros from disk. If a Macro has been changed, the user is prompted to save or save

as it (depending on whether or whether not it already has a filename) before

continuing with other actions. Furthermore, the default directory setting is

automatically updated according to the Radiobutton setting 5. Scripts and Macros are

stored in different directories as defined in the Preferences dialog (Figure 13), or

as the appropriate section in the gnd . ini file tells.

B. THE "TELEMETRY" DIALOG

This dialog presents the current telemetry data received from PANSAT. It is not

yet defined whether all available telemetry should be shown, or just parts of it.

Furthermore, the storage format is not implemented yet; all telemetry shall be stored in an

ODBC-compatible format. This implementation might alter the decision which part of the

telemetry shall be presented in this dialog. In addition, the return structure (the

SReturnCmd structure) is not implemented yet either. This task should be accomplished

after the evaluation of the input structures. Therefore, the outward appearance of this

dialog is postponed after the necessary preliminary actions are taken.

The Preferences dialog (Figure 13) contains information about the location of

telemetry data on a groundstation mass storage device. Telemetry data will be stored in

this directory.

11

www.manaraa.com

C. THE "MAIL" DIALOG

Scripts [lelemetry
|

Mail Memory Low-Level } High-I/—^~\ Files Tasks

From: |jbartschat

J 1
JJiiUKd J

To: |jahorning

CD

CD

Date:
1
00/00/00 12:00 am

Subject
|
Ca plane pour moi

PANSAT Mail Directory:

Get Mail

Get Directory
|

CD
Delete Mail

Purge All Mail

Add Mail

Figure 5: The Mail Dialog

The Mail dialog handles the PANSAT mail capability. Mail could be regarded as

a message with additional information: a. from and to designator, the time the mail was

sent, a subject and the text of the ASCII-message to be included in the mail. This dialog

now offers the possibility to load, create and edit a message, and send it to PANSAT; to

retrieve an already stored mail from PANSAT' s memory, read the message and the

additional information, and save it to disk. The following visual controls allow mail

handling (refer to Figure 5):

1

.

This Listbox shows the current status of the PANSAT Mail Directory, as stored in

recent telemetry. It contains the names of the mail files. Select a mail by highlighting

its name with a mouse click.

2. This Listbox shows the ASCII message of the mail. Carriage return is inserted

automatically.

12

www.manaraa.com

3. This Editfield shows the file name of the current mail.

4. These four Editfields contain additional mail information, very similar to email. The

From and To designator determine the sender and the recipient of the mail, the Date

determines the time (day/month/year hounminute) of sending, and the Subject line

should give an idea of what to expect from the message (as shown in 2).

5. These five Pushbuttons trigger the PANSAT mail input/output. Get Mail retrieves

the mail currently highlighted in 1 and shows it by filling up 2, 3 and 4.

Get Directory updates the entries in 1 by retrieving the current mail directory

from PANSAT. Delete Mail deletes the current selection in 1 by deleting the mail

inside PANSAT, and Purge All Mail deletes all mail inside PANSAT. A
Get Directory afterwards should reflect these actions. The Add Mail button lets

the user edit his own mail in 2, 3 and 4. The button then changes to Send Mail.

When done, the user presses the Send Mail button, and the mail is uplinked to

PANSAT.

13

www.manaraa.com

D. THE "MEMORY" DIALOG

Scripts Telemetry
|

Mail | I Memory;; | Low-Level | High-Level | Files | Tasks

Address: O 20-Bit

I O Seg:0«

Memory: O RAM O SRAM

3 O ROM O FLASH

Mass
A

Mass
B

AMUX
A

AMUX
B EPS

RF
System

1 A \

Memory Block

Address Hex Data ASCII Data
Edit ViewP

Bytes modified:

Bytes written:

fi

Cancel

Reset

i—CDWrite {

--^—^f
Modified

Bytes

Re-Read
Visible

Block

Figure 6: The Memory Dialog

The Memory dialog allows access to the various kinds of memories inside

PANSAT. This is a very powerful feature, because every byte of PANSAT's memory can

be altered. The dialog is intended to serve as an emergency repair possibility only. By

using the features of this dialog, the user must be aware of the fact that he could endanger

the electronic life of PANSAT.

The dialog consists of several parts (refer to Figure 6):

This Grid contains 256 bytes of memory data in 16 rows. The first column Address

shows the address of the memory contents as used in PANSAT. The second column

Hex Data presents the memory data in hex format, 16 bytes per row, separated by

whitespaces. The third column ASCII Data shows the same 16 bytes as in

Hex Data in ASCII format. The user may edit entries in Hex Data and

ASCII Data columns. However, altered data changes its color from black to red, but

is not yet uplinked to PANSAT. The Scrollbar on the right side allows sequential

reading of PANSAT's memory contents; one click on the up or down arrow reads 16

14

www.manaraa.com

bytes, one click above or below the slider reads 256 bytes. Dragging the slider with

the mouse allows placing it to the desired memory range. In this case, the Address
column contents change as the slider is dragged and shows the current 256-byte

address block, but a 256 byte memory block is read from PANSAT only when the

slider is released from dragging.

2. These two Radiobuttons determine the display mode of the Address column

contents in Grid 1 : either 20-Bit or Segment:Offset address display.

3. These four Radiobuttons determine the memory which is shown in Grid 1: RAM,
SRAM, ROM or FLASH memory. ROM cannot be edited.

4. With these six Pushbuttons, the user can define which part of memory is to be

accessed: memory in Mass Storage A or B, Analog Multiplexer A or B, the electric

power supply (EPS) or the communications unit (RF System). In Figure 6, the

Mass A (Mass Storage A) button is selected.

5. With these two Pushbuttons, the user can determine whether to allow memory editing

(Edit) or deny it (View). When denied (View), editing in Grid 1 becomes

impossible.

6. These two Editfields and two Pushbuttons reflect the current memory edit status of

the memory block subject to editing" . In the Bytes modified Editfield the amount

of edited (red), but not yet uplinked data bytes is shown. The Bytes written
Editfield shows the amount of edited bytes already written to PANSAT. The Cancel

button abandons all changes to the memory block subject to editing and reverts its

data bytes to the previous values. Thus, the Bytes modified entry becomes zero,

and all red data in Grid 1 changes its value to the previous setting and becomes black.

The Reset button sets the Bytes written entry to zero, but does not do anything

else to memory data.

7. These two buttons are the only ones which establish PANSAT I/O besides the

Scrollbar in Grid 1. The Write Modified Bytes button writes all edited bytes

shown red in Grid 1 as well as all edited bytes not in the current display of Grid 1 to

the appropriate address and storage (as depicted in 1, 3 and 4) onboard PANSAT. The

Re-Read Visible Block button reads the 256 bytes currently visible in Grid 1

from PANSAT and displays it. Any changes to the visible part of memory are

abandoned by this action; thus, every edited (red) entry is updated with the current

The memory data display is limited to 256 bytes in Grid 1 , but the editable range can be much

bigger (using the Scrollbar in Grid 1). The memory edit status as referred to in 6 includes all edited bytes

(even if they are not visible in Grid 1) since the beginning of the edit session or the last uplink to PANSAT.

15

www.manaraa.com

PANSAT memory contents and is shown in black, and the Bytes modified entry

(6) is adjusted appropriately. This function is particularly useful when monitoring

frequently changing memory contents.

E. THE "LOW-LEVEL" DIALOG

Scripts [Telemetry J Mail I Memory J Low-Level [jjigh-Level | Hies | Tasks

Power Switches

RF: On Off

MUX A; On Off

MUXB: On Off

MStot A: On Off

MStor B: On Off

RF SystemLD
Receiver

Mix
#5

Mix
#6

LNA
#1

LNA
#2

Transmitter

Mix
#5

Mix
#6

HPA
#3

HPA
#4

Batteries

Charge

Discharge

Online

Charge

Discharge

Online

Temperature MUX

Power Level: [To ^ dB

Transmit Mode

Spread
Spectrum

No Spread
Spectrum

Watchdog

O DCS#1

O DCS #2

Reset Stop

Warm Boot DCS

O DCS

O JDCS~#2

-Q
ROM
Boot

SCOS Parameters

Read GJ
Update

PANSAT Clock

Read Set

00:00:00 Mon. Jan 01.00

Peripheral

Control BusO
init

Figure 7: The Low-Level Dialog

The Low-Level dialog handles a multitude of settings onboard PANSAT which

relate to close-to-hardware components control. The dialog is designed to provide a

system overlook; thus it contains more visual controls than other dialogs. It falls into

several parts (Figure 7):

1. The Power Switches frame contains On-Off switches for multiple hardware

sections onboard PANSAT: the communications unit (RF), the multiplexing units A
and B (MUX A, MUX b), and the mass storage devices A and B (MStor A, MStor B).

On means, the unit is provided with current, Off means, no current available for the

unit.

16

www.manaraa.com

2. The RF System frame falls into four parts: Receiver, Transmitter,

Power Level and Transmit Mode. The Receiver and Transmitter Mixer

settings are interdependent: when using Mix #5 for one of them, it is desirable that

the other also uses Mix #5, and the same with Mix #6. However, it might turn out to

be necessary to have different Mixer switches for receiving and transmitting. The first

choice would be to use Mix #5 and LNA #1 for the receiver, and Mix #5 and

HPA #3 for the transmitter. The receiver may use either low noise amplifier (LNA #1

or LNA #2), and the transmitter may use either high power amplifier (HPA #3 or

HPA #4). The numbering refers to bits in the control byte determining the receiver

and transmitter settings. The Power Level Spin Control allows for settings in the

range from to 255 dB; however, the exact attenuation level is not determined yet.

The Transmit Mode subframe allows for Spread Spectrum or No Spread
Spectrum; settings for Narrow Band transmission and Binary Phased Shift Keying

(BPSK) are set automatically.

3. The Batteries frame contains settings for both batteries, A and B. The possible

settings are Charge, Discharge and Online. During system start, it is possible

(though not desirable) to have the batteries in none of those three modes. There are

several combinations which are not possible: for each battery, it is prohibited to to

Charge and be Online, or Discharge and be Online, or to Charge and

Discharge, or to Charge and Discharge and be Online. Furthermore, it is not

allowed that both batteries Charge at the same time, or that one battery Charges the

same time the other battery is Online.

4. The Temperature MUX (Multiplexer) switch is not determined yet.

5. The Watchdog Radiobuttons and Pushbuttons control the Digital Control System

(DCS #1 or DCS #2). Each chosen DCS watchdog can be halted by pressing stop,

and it can be reset by pressing Reset.

6. Each Digital Control System's ROM can be rebooted by pressing the ROM Boot

button.

7. The SCOS Parameters frame allows for Read and Update

Spacecraft Operating System's Parameters. It is not yet defined how data transfer

should be accomplished for this task.

8. The PANSAT Clock frame contains an Editfield showing the current PANSAT
system clock. In case it differs from ground time, the user may click the Set button to

adjust PANSAT' s system clock to the Software Groundstation time. This should only

be done directly after reading PANSAT's system time via the Read button, because

the time display is not updated automatically.

17

www.manaraa.com

9. The Peripheral Control Bus (PCB) onboard PANSAT can be initialized inside the

Peripheral Control Bus frame. This will reset it to a defined startup status.

F. THE "HIGH-LEVEL" DIALOG

,S_cripts [Telemetry] Mail | Memory [Low-Level | JHiglvLevell] Hies |^ Tastes

Foreign Users: O Drop & Lockout

O Lockout ^^
O Unlock 3Event Log Start

|
hh mm ss ap Ddd. Mmm dd.

Time Command Executed _t

[71 12:00:00

? 12:00:00

3 12:00:00

A 12:00:00

5 12:00:00 / v
(1 m

6 12:00:00 1 1
7 12:00:00 I J
R 12:00:00

9 12:00:00

10 12:00:00

11 12:00:00

12 12:00:00 *

Time-Tagged Commands

I

12:00:00

12:00:00

12:00:00

12:00:00

12:00:00

12:00:00

12:00:00

12:00:00

12:00:00

12:00:00

12:00:00

CD

Read Purge All 5 Add... Delete List Purge Allrn
Figure 8: The High-Level Dialog

The Software Groundstation's High-Level dialog (Figure 8) handles

PANSAT' s Event Log and Time Tagged Commands feature. An Event Log is a list of

time associated with an already executed command; Time Tagged Commanding allows

remote command execution by associating a command to a certain time at which the

command shall be executed. Thus, both lists contain the same time-to-command

association. The Event Log is a report of what already happened, whereas the Time

Tagged Command list holds commands for future execution. The following visual

controls allow Event Log and Time Tagged Command handling:

18

www.manaraa.com

1

.

This Grid contains PANSAT's current Event Log. The list may display up to 12 time-

to-command associations. The Time column contains the time in

hours:minutes:seconds of PANSAT time and shows at which time the command
depicted in the same row under the Command Executed column has been executed.

2. This Grid holds all currently activated Time Tagged Commands. It is built up similar

to Grid 1

.

3. The Start Editfield contains the exact time and date the current Event Log has

started. This time is given in hours:minutes:seconds day, month, year format.

4. These three Radiobuttons determine what status PANSAT is set to as far as user

access is concerned. Drop&Lockout executes the appropriate PCL commands and

ceases eventual foreign user access and prevents new foreign users from logging into

PANSAT. Lockout just prevents foreign users from logging on, and Unlock finally

allows them to again log into PANSAT.

5. The two Pushbuttons below Grid 1 refer to PANSAT's Event Log. Read retrieves the

current Event Log. Purge All deletes it from PANSAT's memory, clears all Grid 1

entries and resets the Start Editfield.

6. These four Pushbuttons below Grid 2 handle Time Tagged Commanding (TTC). The

Add. . . button adds a PCL command to the list. It invokes the Scripts dialog and

puts it into a special mode so that only one PCL command (and its parameters, if

applicable) may be selected. Then the command is pasted into Grid 2, where the user

has to define the time he wishes the command to be executed. This time-to-command

association then is sorted into Grid 2 (by time criterion). The Delete button erases

the highlighted time-to-command association from PANSAT's TTC list. The List

button retrieves the currently activated list of PANSAT's TTC. The Purge All

button finally erases all currently activated entries from PANSAT's TTC list.

19

www.manaraa.com

G. THE "FILES" DIALOG

Scripts 1 lelemetry
j

Mail Memory Low-Level } High-Level
| iFiles! Tasks

PANSAT File Directory: Selected File(s) ->

CD

HComb ^^L=J

CD

Read File

Read Directory
|

Delete File

Purge All Files

Write File

Figure 9: The Files Dialog

The Files dialog enables the user to access all file related functionality via PCL.

A file is every portion of data associated with a filename by SCOS, and stored in SCOS-

accessible memory. Mail, for example, is stored as a file. The following Files dialog

items shall be implemented:

1. This Listbox contains the current PANSAT filename list as known in recent

telemetry.

2. In this Listbox, the contents of the file named as shown in Editfield 3 is displayed.

3. This Combobox under the Selected File (s) : Static Display contains a list of all

recently read files. These files may be stored in the location identified by the IN

section of the Preferences dialog (Figure 13), or the appropriate entry in the

GND . INI file.

4. These five buttons enable file reading, deleting and writing from and to PANSAT.
Read File reads the highlighted file as depicted in 1 and displays its contents and

20

www.manaraa.com

name in 2 and 3. Read Directory retrieves PANSAT' s current file directory and

places this list in 1. Delete File erases the highlighted filename entry from

PANSAT's file directory, and Purge All Files erases the entire filename list from

PANSAT's file directory. Write File finally writes a file to PANSAT's mass

storage device and creates an entry in PANSAT's file directory. This file shall be

loaded from a groundstation storage device to 2, from where it could be uplinked via

Write File. The appropriate buttons for loading a file from a groundstation storage

device are not implemented yet. The files intended to uplink to PANSAT could be

stored in the location identified by the OUT section of the Preferences dialog

(Figure 13), or the appropriate entry in the GND . INI file.

H. THE "TASK" DIALOG

Memory
|
Low-Level | High-Level | Rles | Tasfcsj.Scripts

I
lelemetry

|
Mail

Add: O Add & Start Task & Get List

O Add & Get List

O Add

Available Task(s)

7 r r v

IP -CD-

Sys.exe

Get Tasklist

L£D
Delete Task

File Size Load...

GJ

Figure 10: The Tasks Dialog

The Tasks dialog as depicted in Figure 10 enables the user to perform task

handling. A task is a PANSAT executable which is added to the SCOS-maintained task

list. With SCOS, a Priority-based Round Robin task scheduling method is used. The

following visual control reflect this functionality:

21

www.manaraa.com

1. This Grid contains task information for tasks currently recognized by SCOS. Five

colums provide the necessary task information. The first column contains Checkboxes

showing an activated (crossed) or deactivated (not crossed) status. The second column

Task displays the task name; the third, status, the current task status: running,

waiting, and screech. Refer to [Ref. 17] for further information. The fourth column

Pri shows the task priority in four possible levels: is highest, 3 is lowest ([Ref. 17,

page 1 1]). The fifth and last column, Size, depicts the length of the task in bytes. It

may be as long as 2 -1= 65535 bytes. Only the first column (activation status) and

the Pri column allow for user editing.

2. This Grid contains all files stored in the location referenced by the Task List

section of the Preferences dialog (Figure 13). The Software Groundstation

considers all files in this directory as valid PANSAT executables. Filename and file

size are shown in the appropriate columns.

3. This Editfield contains the name of the highlighted task from Grid 2.

4. These three Radiobuttons determine what action is executed when pressin the Add
button 5. Add & Start Task & Get List lets the Add button perform all these

three actions; the Add & Get List and Add Radiobuttons let the Add button

perform actions respectively.

5. The Add Pushbutton uplinks the task with the taskname as shown in 3 to PANSAT'

s

Task List. Depending on the settings in 4, this button behaves different. When
Add & Start Task & Get List is activated, a click on the Add button is the

same as adding a new task to PANSAT' s task list, clicking its activation checkbox in

1 and pressing the Get Tasklist button. When Add & Get List is activated, a

click on the Add button is the same as adding a new task to PANSAT' s task list and

pressing the Get Tasklist button. If only the Add radiobutton is activated, a click

on the Add button is just the same as adding a new task to PANSAT's task list.

6. The Get Tasklist button retrieves the current task list from PANSAT, and the

Delete Task button erases the task currently highlighted in 1 from PANSAT's task

list.

7. The Load. . . button allows loading PANSAT executables from other locations than

shown in the Preferences dialog in the Task List Editbox by bringing up an

appropriate Common Dialog Box.

22

www.manaraa.com

I. THE EMBEDDING MACRO/STATUS DIALOG

All dialogs explained above are embedded in a

main dialog template which extends the Software

Groundstation functionality by a Macro List (Figure 11)

and a Status Display (Figure 12).

The Macro List at the far right side of the main

dialog contains the following visual controls:

Up to 15 Macros may be accessed by the pushbuttons

to 15. By clicking these buttons with the left

mousebutton, the macro stored in this place may be

executed. Macro language allows recursive execution

of macros (Macro A invokes Macro B, and Macro B
invokes Macro A, ...). By clicking one of these buttons

with the right mousebutton, the Macro dialog appears

(to be determined). From within this dialog, the user

may load a new macro, and give it a name other than

just a number, which then will be displayed instead of

the number as shown in Figure 1 1 . If not every macro

button is occupied, the macro list is limited to the

current amount of macros.

o

1

2

3

4

5

E

10

11

12

13

14

15

Figure 11: The Macro List

2. The . . . button switches to the following selection of 1 5 macros from the macro list,

or, if the end of the list is reached, to the first 1 5 macros. The macro list can be much

longer than just 15 macros. This button allows for switching in portions of 15 macros.

The Status Display on the bottom of the main dialog contains the following items:

The Send and Receive color frame. When sending (that is, transmitting data

through the serial port), the dark red color turns to bright red. When receiving

(obtaining data from the serial port), the dark blue color turns to bright blue.

Send

Receive

] | System Time & Date!

^«—-T 09:58:21 Mon. Sep 1 1.95

Figure 12: The Status Display

Pause Log: PCL User mcl(4

00:00:00

CD
a

23

www.manaraa.com

The System Time &

internal time and date.

Date Editfield reflects the current Software Groundstation

3. This short period timer can be started by pressing start or halted by pressing

Pause. When pressing start while pausing, the timer is reset to 00:00:00. Pressing

Pause when pausing resumes the timer. This timer may become particularly

important in order to achieve a time perception of how long PANSAT will be above

the earth horizon. It could be started when first establishing contact with the satellite

and thus measure the communication period.

4. The Log Combobox reflects all actions done with the Software groundstation. It

contains Event Log-like entries which then are stored under a username-specific

filename according to the login (refer to Figure 14) in the directory referenced to by

the User Log Editlist entry of the Preferences dialog (Figure 13). Three

Pushbuttons determine what type of user action is shown in the Log Combobox: PCL

means that only PCL commands are shown in the Log; mcl means, all commands

(including PCL commands and the Software Groundstation commands as used for

the Script language) are shown in the Log. User then advises the Log only to reflect

all Script language commands without the PCL commands.

J. THE LOGIN AND PREFERENCES DIALOG

Preferences

Directory Settings-

Scripts:

Macros:

Telemetry Data:

User Log:

Task List

IN Data:

OUT Data:

D:\Ground\Script

D:\Ground\Macro

D:\Ground\Telmetry

D:\Ground\Userlog

D:\Ground\Task

D:\Ground\IN

D:\Ground\OUT

10 Kl Cancel

Figure 13: The Preferences Dialog

The Preferences dialog as

shown in Figure 1 3 reflects the contents

of the GND . INI file. Every time it is

invoked by the appropriate menu item,

the GND . ini file is read. When clicking

OK, the current contents of the dialog is

saved to GND.INI. Cancel abandons

eventual changes.

The Editfields of this dialog

determine the storage directory for

various groundstation settings. Refer to

the description of the appropriate dialog

above for further details.

24

www.manaraa.com

PANSAT Groundstation User Login

Please enter your login and password

Login: |jbartschat

Password: !

Ok Cancel

The Login dialog as shown in Figure

14 must be invoked before any

communication with PANSAT may be

established. Both a user login and a password

must be provided. An internal user list then

recognizes the user status. The groundstation

application divides into four of them:

System Administrator (all functionality,

including password setting for other users), Super User (all PANSAT-related

functionality). Intermediate User (all PANSAT-related functionality, except Low-Level

and Memory dialog features), and Normal User (only Mail dialog features).

Figure 14: The Login Dialog

25

www.manaraa.com

IV. DEVELOPMENT PREPARATION MANUAL

This preparation manual is intended for use by a developer who wants to continue

developing either the groundstation software or create an application using a similar

environment. It consists of three sections. The first section describes the necessary steps

of installing and configuring the various software tools related to the development of the

PANSAT Software Groundstation. The second section contains a brief explanation of

basic programming knowledge necesssary to understand not only how the groundstation

software is structured, but also how the Windows operating system related applications

are implemented in general. The third section finally puts the first two together and

explains briefly, how the various software tools may assist you in developing an arbitrary

application taking the groundstation software as an example.

The following will be very useful for programmers who want to develop their

own applications in a similar environment to the one used for the PANSAT Software

Groundstation, which could be considered as a typical Windows application. It assumes

you are already familiar with at least the "Groundstation Requirements" chapter.

A. INSTALLATIONS AND CONFIGURATIONS

This section describes the necessary steps of installing and configuring the various

software tools related to the development of the PANSAT Software Groundstation.

1. Basic Installations

After successfully installing Windows NT 3.5 and MSVC 2.0, WinWidgets (WW)

and Resource Workshop (RW) were installed. Following the automated installation, these

tools could still not interact. The following steps describe how to access RW from within

MSVC, and how to tell MSVC, RW and the current application to work properly with

WW.

26

www.manaraa.com

2. Connecting the Compiler to the Resource Workshop

Start MSVC. Under the Tools menu item, choose Customize. . . and the

tabbed dialog Tools. Enter the path to the Resource Workshop as you installed it on the

harddisk under the Command entry, or browse for Resource . exe. Enter Workshop or

another more convenient name under the Menu Text entry. Under Arguments, enter

$RC and every time you start RW, the current *.RC file containing resource information

from your application will be passed to RW and automatically displayed by it. Under

Initial Directory, enter $ProjDir and RW knows that the current resource file

could be found in the project directory created by MSVC. For a more detailed description

of all possible features, press the Help button.

Now affirm all your actions and leave the Tools dialog. The Tools menu bar

should now contain the new entry Workshop (or any other text you wrote into the Menu

Text section of the Tools dialog).

3. Connecting the Compiler and the Application to

WinWidgets

Once you have created an application skeleton with MSVC, you are ready to

connect MSVC and this application to WinWidgets. If you do not know how to create an

application skeleton, refer to "Programming with the Microsoft Visual C++ Compiler".

If you plan to use WW with more than just one application, it makes sense to put

all necessary changes in a text file. This file could look like the following:

27

www.manaraa.com

C/C++ Preprocessor AND Resources

:

d: \widgets\include, d: \widgets\cpp\include

Link Input:
d: \widgets\lib\xtbl32 . lib d: \widgets\lib\widge32 . lib

Initlnstance ()

:

Widgetslnit ()

;

XTableInit()

;

App . h

:

#include "mfcwidg.h"
#include "mfcxtbl.h"

Load this file into a text editor or to a temporary opened new text window under

MSVC. The four paragraphs contain all the information you need to paste into MSVC

settings and/or your application. This file assumes that you have installed WW in the

Widgets drawer of your D : drive. If not, change the appropriate lines in the above text.

Invoke MSVC and the Project/Settings. . . dialog. Choose the C/C++ tab

and from the appearing Category drop list, choose Preprocessor. Copy the line

following "C/C++ Preprocessor AND Resources:" into the clipboard and paste it into the

Additional Include Directories edit box. Now choose the Resources tab in

the settings dialog and paste the same string into the Additional Include

Directories edit box of this tab also.

Now choose the Link tab and from the appearing Category drop list, choose

Input. Copy the line following "Link Input:" into the Object/Library Modules edit

box.

Open the application file of your previously created project. If you named your

project xyz, then the application file of your project is named xyz . cpp and could be

found in the drawer XYZ (unless you specified otherwise; this is the default setting). In

XYZ. cpp, you find a method called Initlnstance. Copy the lines following

"Initlnstance():" at the beginning of the Initlnstance method.

Open the corresponding include-file, that is, the include file named XYZ.h. It

contains application-wide declarations and definitions and is included in every *.cpp file

28

www.manaraa.com

of your project. Copy the lines following "App.h:" (this is meant to refer to XYZ.h, in

this example) at the beginnig of XYZ.h. If you use precompiled headers
3

, you can copy

these lines into your stdafx.h file also (automatically created by the compiler).

4. Connecting the Resource Workshop to WinWidgets

Invoke Resource Workshop by choosing Tools/Workshop from within the

Visual Workbench (the MSVC IDE). If you want Resource Workshop to recognize

WinWidgets, it must be told how to display the controls provided by WinWidgets, and

how to work with them. A so-called control library ships wiith the WinWidgets package.

It is called hdlg.dll and contains all visual information about the controls in a dialog

editor readable format. From within Resource Workshop, choose Install Control

Library from the Files menu after creating a new dialog with

Resource/New/Dialog. The Tools floating dialog should now be extended by a

couple of new entries. Choose File/Add To Project and include the file mfcwidg . h

from the widgets/cpp/include directory (your WinWidgets installation).

B. PROGRAMMING WITH THE MICROSOFT VISUAL C++

COMPILER

This section contains a brief explanation of basic programming knowledge

necesssary to understand not only how the PANSAT Groundstation Software is

structured, but also how Windows operating system related applications are implemented

in general. It assumes you are familiar with C and C++ programming.

J

Precompiled headers contain parts of your application which are seldomly changed, but contain

frequently used definitions. When building your application, these precompiled headers are included

without recompiling, thus speeding up the edit-debug turn-around process. Use project settings to use this

feature.

IDE: Integrated Development Environment

29

www.manaraa.com

This description refers to the Microsoft Visual C++ Compiler version 2.0 for use

under Windows NT. It is still valuable for use with the previous compiler versions which

run under Windows 3.x; however, a few adjustments according to menu or dialog

references should be made in this case.

1. General

Programming with MSVC most likely means programming using Windows-

specific environment (in case ofMSVC version 2.0 or more, it means programming using

Windows NT). As Windows NT is a graphical oriented operating system, the whole

application development procedure falls into two parts: first, the definition of the GUI

and second, the actual programming of the controls offered by the GUI.

The first part (definition of the GUI) means painting and designing the outward

appearance of your application with a tool called a dialog editor. MSVC has a built-in

dialog editor named AppStudio, and there are several other dialog editors on the market,

such as Borland's Resource Workshop which we are using to design applications. Their

input and output are text files containing descriptions of the controls, menu bars and

dialogs you chose to design. These text files are compiled by MSVC (or rather any

Windows based development system) and added to the compiled C/C++ files of your

application.

This leads to the second part (programming of the controls offered by the GUI) of

the application development. The GUI itself is performs no useful action; it does not

contain any intelligent user interaction code. This interaction code is what you have to

write in order to get your application working. The GUI is just the outward appearance;

the data structures and meanings of mouse clicks, menu choices and so on is up to the

application's developer. This is exactly what you do when writing C++ code for an

application. You build data structures to store internal data just the way you would in a

non-Windows-based program. You refer to GUI parts (controls, menus, accelerators,

30

www.manaraa.com

dialogs,...) via #define'd integer values" . Windows itself offers many functions to

choose, change, and draw GUI parts. You use these functions (or the corresponding MFC

function, see below) with the defined integer values as parameters to address the control

you want.

2. Microsoft Foundation Classes (MFC)

The Microsoft Foundation Classes is a class library that encapsulates Windows

functions in special classes. Programming with MSVC primarily means programming

with MFC. This is just a thin layer above Windows, but it simplifies and and structures

the application development. Almost every function (or, spoken in C++, method) used in

the groundstation is a MFC function. If you know how to program MFC, you know how-

to program Windows - and even a little bit more.

Windows (NT) is a message-based operating system. That means, program code

is not executed from beginning to ending; instead, the methods the application contains

are invoked because Windows invoked them, by sending messages to your application.

And Windows sends messages because the user sitting in front of the computer clicks or

writes something within the application. From the programmer's view, most of this

message passing is hidden; fortunately, because even without worrying about message

passing, Windows programming is difficult. This message passing is hidden in MFC (but

conducted by Windows, as MFC is only a layer above Windows for programmer's

convenience), and to make use of it, MSVC is provided with a tool called ClassWizard

(see "Using ClassWizard to Change Your Application" for details).

Found in the Resource . h file of an application.

31

www.manaraa.com

3. The Document-Frame-View Architecture

If you already have done serious programming, you might have encountered a

problem not easy to deal with: your application grew too large to maintain a proper

overview. And if you continue to increase the code, you start spending more and more

time just looking for previously programmed code in order to find out about the correct

software interface definitions you invented.

As Windows-based applications grow large quickly, MFC offers a built-in order

scheme in shape of the so-called document-frame-view architecture (sometimes referred

to as document-view- or doc-view-architecture). The three parts represent three different

sections of your own application as far as the programming contents is concerned. By

creating an application skeleton with AppWizard, this threefold architecture is

implemented automatically. MFC uses special classes to represent each part of this

architecture. You REALLY should make use of it.

A document contains all the data structures, calculation methods and other

internal processing routines representing the core of your application. It does not know

anything about user interaction or GUI programming. It is what your program is all

about; the document represents just pure functionality. It is normally derived from the

MFC class CDocument.

A frame is all visible controls, like scrollbars, buttons, edit boxes, checkboxes,

listboxes and comboboxes, all menu bars and dialogs and their controls. In short: it is all

you can click on and expect some kind of action from. As its name implies, it is a frame

for the application, its outward appearance. It is normally derived from the MFC class

CFrameWnd.

A view is the so-called client area of a frame. This is the blank middle part of a

frame in which you can make your application paint, draw or write what you want it to. It

works as the visual interface between the document and the user; thus it normally

32

www.manaraa.com

displays data stored and/or calculated in the document to the user. It is normally derived

from the MFC class CView.

Depending on several settings and your own intentions, the main document, frame

and view classes may be derived from other base classes of MFC. These details are not

within the scope of this thesis.

It is the programmer's responsibility to program the doc-view architecture in the

above specified way. Once you have performed a little programming, you should develop

a better feeling for how and when to put your methods in one of the above parts. MFC

just provides you with a framework; you fill it out by yourself. All of the above

mentioned classes can access the two others in a limited way, so be careful where you put

your methods and whether they have to use features only supported by another class.

As mentioned above, the view displays document data. Thus, it has a

GetDocument method to obtain a pointer to the document attached to that view, so the

view can access all public data of the document via this pointer. On the other side, the

document has an UpdateAllViews method which invokes a special method inside

every view attached to this document. This method should be called when the document

is ready with a lengthy calculation. Upon receipt of this UpdateAllViews message, the

view can update its display using the data the document just finished calculating. You,

the programmer call UpdateAllViews from within your calculation routine inside your

document class, because you know best when the data is ready to be displayed. The

special method based in the view class and invoked by UpdateAllViews is named

OnUpdate. Knowing this, you just override OnUpdate in your view class and write a

couple of lines of code into this method to take care of displaying the calculated data.

This description is only intended to be a short overview of what a message based

operating system is capable of and how clean it could be programmed, if you use its

capabilities correctly.

33

www.manaraa.com

4. Project Files

A C++ project (sometimes referred to as an "application" or "program") contains

multiple source files bound together. This project can be changed at any time during the

development process. You normally create an application with AppWizard, because this

is the most convenient way and you do not have to worry about the application

framework.

By default, every base class (such as the document, frame and view class) has its

own include (*.h) and implementation (*.cpp) files. For example, the groundstation

project name is "gnd". You will find the document class definitions in gnddoc.h, and

the document class implementation in gnddoc.cpp. Same with the view: gndview.h

and gndview.cpp. The (one and only) frame resides by default in mainfrm.h and

mainfrm.cpp. In addition, a fourth pair of files is generated: the application file in

which the document, frame and view are linked together in a so-called document

template: gnd . h and gnd . cpp.

So far, only the code part of the application is concerned. What about the visual

part, all the controls, dialogs etc.? By default, a file named gnd. re is generated. It

contains all information about controls and dialogs, where they are placed and their

properties. This file must conveniently be edited in a visual manner (although it is a text

file) with a dialog editor, in our case Resource Workshop. In addition, a separate file

named Resource. h contains all the #define's for all resources , that is, their integer

Ids.

Resources are controls and dialogs. Controls are scrollbars, buttons, checkboxes, radiobuttons,

listboxes, comboboxes and other custom controls, such as grids, spin controls, and so on. Dialogs can

contain controls, and they can be ordered in so-called tabbed dialogs (used by the groundstation).

34

www.manaraa.com

C. TOOL'S REFERENCE

This reference describes the main tools a software developer will be working with

using MSVC. Their use makes programming more convenient; thus allowing the

developer more time to concentrate on the actual application details instead of the

framework's. Parts of this array of convenient tools are the MSVC AppWizard and

ClassWizard as well as the add-on Borland Resource Workshop. Finally, the MSVC

Online Help as a necessary source of all types of development-related information, is

most valuable.

1. Using AppWizard to Create an Application Skeleton

Windows based MFC applications require a huge framework overhead before

doing anything useful. To prevent the programmer from re-inventing the wheel for each

application, MSVC is provided with AppWizard (invoked by File/New/Project). It is

used only once during the development: at the very beginning. AppWizard lets you define

the desired features of your application by clicking in its dialogs. Refer to the Installation

Manual or Online Help for details. Most of the choices are self-explanatory. However,

there are several things you must be familiar with before you start AppWizard and

program. You can easily try and see what the output files look like by invoking

AppWizard and choose arbitrary settings. It takes just a couple of seconds to create an

application skeleton, and everything is put into a separate subdirectory, so you can easily

delete the entire project with the Windows File Manager.

Single Document Interface (SDI) means that there is only one document class and

normally only one view attached to that document in your application. Multiple

Document Interface (MDI) creates an extendable document template, thus more than one

document class can be used, and usually more than one view can be created, too. With

groundstation, the SDI concept was used.

35

www.manaraa.com

7 • 8
You can also choose OLE capabilities as well as database support via ODBC

compatibility. These are advanced topics you should not use unless you fully understand

what they support.

2. Using ClassWizard to Change Your Application

ClassWizard can be used to maintain and change classes, use the message map

system to link visual controls to program code or change class member variables. It can

also be used for OLE related maintenance, which is not described here. The most

essential and often used task with ClassWizard is its message map maintenance

capability. To understand a little bit better how ClassWizard works, you must first learn

how to implement the message map system without use of ClassWizard.

As mentioned above Windows (NT) is a message based operating system. Thus,

every application programmed for use with Windows and taking advantage of its

graphical capabilites, must be able to do message passing from and to Windows. In MFC,

this goal is achieved by the concept of message maps and window functions.

A message map is a set of commands which tell Windows

• which type of message Windows should catch,

• to which visual control the message should be attached to,

• which window function should be executed upon receipt of this message.

OLE: Object Linking and Embedding. This technique allows users to link or physically embed

(include) objects created from OLE servers into an OLE client application. An OLE client application

serves as a container for data created by OLE servers. OLE itself is the standardized interface to allow OLE

item interchange by copy/paste or drag and drop.

ODBC: Open Database Connectivity. This standardized interface definition simplifies database

record interchange between DBMS (Database Management Systems) as well as ODBC compatible C++

applications (for example). It requires ODBC drivers for both sides of the interchange chain, which are

available from third party developers.

36

www.manaraa.com

It looks something like the following:

BEGIN_MESSAGE_MAP (CGndView , CView)

// { {AFX_MSG_MAP (CGndView)
ON_COMMAND (ID_ACCESS_LOGON , OnUserAccess

)

ON_COMMAND (ID_ACCESS_LOGOFF , OnEndUserAccess

)

ON_COMMAND (ID_PREFERENCES , OnPreferences

)

// } }AFX_MSG_MAP
// Standard printing commands
ON_COMMAND (ID_FILE_PRINT , CView : : OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, View: : OnFilePrintPreview)

END_MESSAGE_MAP (

)

The ON_COMMAND macro tells Windows that the type of message is a command

message. The first parameter refers to the visual control whose activation you want to

catch. For example, the above lD_ACCESS_LOGON identifier (as defined in

Resource, h) refers to a menu entry in the main menu of the groundstation application.

And every time the user activates the menu entry with this specific ID, the method

OnUserAccess is invoked. This special method is also called window function or

message handler. It is part of the class for which this message map is defined, in this

case CGndView which is derived from the MFC class CView - the former being the view

class of the groundstation. This information is given by the parameters of the

begin_message_map macro. The whole message map as shown could be found in the

implementation file for the application view, gndview.cpp. Every class containing a

DECLARE_MESSAGE_MAP () macro in its class declaration (to be found in gndview . h

for this example) can contain a message map of the type shown above.

Besides the entries into the message map, there are two additional things to

remember in order to make the message passing mechanism work: the declaration of the

window function in the class declaration file, and the definition of the window function in

the implementation file.

The declaration of window functions could look like this:

37

www.manaraa.com

protected:
// Generated message map functions

// { {AFX_MSG (CGndView)
afx_msg void OnUserAccess ()

;

afx_msg void OnEndUserAccess () ;

afx_msg void OnPreferences ()

;

//} }AFX_MSG
DECLARE MESSAGE MAP()

All window function declarations start with afx_msg. Right now, this #define

resolves to void; however, future versions of MFC may redefine its meaning. No window

function does return a value, and only some take parameters. This excerpt is located in

gndview . h in the CGndView class declaration.

The definition of the window function looks somewhat like this:

void CGndView: : OnUserAccess ()

{

// Put your code handling the activation of the Access/User
// menu item from the groundstation main menu here

}

Conclusion: add a control item handler to your application by

• adding an appropriate entry into the message map of the appropriate class,

• add a window function declaration to the class declaration,

• write the window function into the implementation file of the appropriate class.

In most cases, you do not have to remember those steps nor the changes you have

to make to the *.h/*.cpp pair of files of the appropriate class. Instead, you use

ClassWizard (Project/ClassWizard and the Message Maps tab from within the

Visual Workbench). You see all classes recognized by ClassWizard available in the

Class name combobox. Choose the appropriate class; if you do not know what the

appropriate class would be, review "The Document-Frame-View Architecture" discussed

38

www.manaraa.com

above, or refer to appropriate help files within the MSVC Online Help. Then choose the

ID of the visual control you want to create a window function for from the Object IDs

listbox, and the message type in the Messages listbox. Normally you only have the

choice between command and update_ui, and most of the time command is chosen.

You specify the name of the window function and click Add Function; and all of the

above changes are made automatically.

However, sometimes ClassWizard does not recognize all classes. Either rebuild

your ClassWizard database by deleting the *.clw file (i.e., gnd.clw) first, then invoke

ClassWizard and follow the instructions, or implement the necessary lines of code

yourself.

3. Using the Resource Workshop Dialog Editor

Borland's Resource Workshop (RW) is an advanced dialog editor for Windows

or Windows NT and is intended to be used with any software development application

which understands and implements the commands defined for Resources (extension *.rc).

An *.rc file (resource file) is a text file that can be edited with any text editor; any

changes, which are in compliance with the Resource Language, made to this kind of file

thus will be recognized correctly the next time RW processes it. However, this is not the

recommended way to change your resource file. RW allows changing these files in a

graphical manner. If you want to learn about editing a resource file, read the instructions

in the help files provided with RW. Nonetheless, a short list of information is provided

which you should be aware of before you actually should use RW, and for

troubleshooting using RW in connection with AppStudio.

9
Dialog Editor: every software tool which is able to edit a resource file in a visual manner. This

includes not only dialogs, as the name might suggest, but every kind of resource type and visual control.

39

www.manaraa.com

The normal working procedure of a dialog editor is a useful thing to know,

because in case of errors you will be able to tell more quickly where this error might have

occurred. This description is not limited to RW; other dialog editors work similarly.

When starting up RW, either the corresponding resource file is loaded

automatically (from within the Visual Workbench, if you have defined the appropriate

parameters), or you have to open or create a new one (when using RW as a stand-alone

dialog editor). But first, what is a resource? Every kind of data which normally refers to

the outward appearance of an application is stored as a resource. It can be edited and

compiled separately from the application code, and it can be loaded to or discarded from

memory at any time the user invokes certain resource-based visual controls or the

operating system needs memory. When working with large applications on a small

computer system, you might have encountered a delay and harddisk access when you

clicked on a menu or invoked a dialog. In this case, the operating system discarded

former instances of these resource types from memory and had to load them again at the

time you needed them.

You are able to create and edit all kinds of resource types, such as dialogs,

accelerators (key-invoked commands), menus, bitmaps, cursors, fonts, icons, stringtables

(lists of strings you wish to put in resources) and a couple of others not commonly used.

Dialogs are the most complex of these resource types because they can be related to all of

the above types and the visual controls. Visual controls in general are all kinds of visual

gadgets you expect a reaction from when clicking them with the mouse pointer. Thus,

visual controls are pushbuttons, checkboxes, radiobuttons and a couple more button

derivatives, listboxes, comboboxes (drop-down listboxes), statics (statically displayed

text), editfields (editable text) and, in case of the WW-package, many more sophisticated

visual controls, such as grid controls, spin controls, tab controls, toolbars and

spreadsheet controls. To learn more about those visual controls, refer to the WW help

files and [Ref. 1].

40

www.manaraa.com

As every resource type and visual control can be customized (which will be done

in most of the cases), the programmer has to define their properties. This is done inside

RW by just double-clicking the desired resource and define or alter the parameters

presented in the upcoming properties dialog box. In case of the WW button, for example,

the programmer first has to decide whether to use a pushbutton, a checkbox or

radiobutton (which are buttons the way WW understands it), a tristate or grouped button

(two or more buttons linked together, of which only one can be pressed down). Then he

can go on defining the appropriate text, icon, flags and other parameters needed to display

the visual control correctly.

Every visual control has its own properties. Refer to the appropriate help files and

reference manuals for further information, or just use a trial-and-error strategy as most of

the property definitions (flags, positions, entries, height, width, sub-controls,...) are self

explanatory.

Most dialog editors (and RW is not an exception) use two files to store their

information. First, in an *.rc resource file the location and properties of resource types

and visual controls is encoded in Resource Language. Second, a *.h resource header file

(in case of MSVC, resource. h) contains all necessary #define*s which serve as an

interface between the resource file data (from the *.rc file) and the code added by the

programmer to access this data from within the C++ code (from within the C++ source

files). The programmer defines control names for every visual control he creates using

RW. By convention, they are all uppercase, starting with IDC {control identification) with

underscore keys to separate the descriptive parts. These definitions are converted to

#define's in resource. h as integer values. The programmer refers to a visual

command inside his C++ source by using the control name defined in RW, and the

compiler resolves to the appropriate integer value because of the entries in resource, h.

Conclusion: What you basically do with a dialog editor is

• load or create a resource file,

41

www.manaraa.com

• choose the desired resource type and define its properties, and, in case of a dialog,

• place visual controls wherever you want them to appear, defining their properties

and often customizing their width and height as well as the alignment to other visual

controls, and finally

• saving the edited resources to your resource file.

All steps following this process (compiling the resource file, including it into your

application) are done automatically by the MSVC compiler and linker and thus are

independent from RW. The "only'
1

remaining is actually programming the RW-defined

resources. What you created with RW is just the outward appearance of your application,

but no functionality except the default visual control behaviour is implemented. The

programmer himself has to take care of how every visual control behaves and what

reaction it produces. He can rely on the classes provided with MSVC and WW in order to

access, control and alter every visual control. This makes clear that the actual

programming has to be done after the resources have been designed with a dialog editor.

RW normally ships with the Borland C++ Compiler, but can also be used as a

stand-alone application. This makes it valuable for use with MSVC, the biggest

competitor for Borland's C++ compiler on the market right now. The current RW version

4.5 allows basically all operations which would be possible to perform with the MSVC

built-in AppStudio. However, in contrary to AppStudio the RW Dialog Editor allows

installation of additional control libraries, which is a necessary feature to use the

Default visual control behaviour: every action done automatically with a visual control by the

framework. Examples: clicking on a checkbox or radiobutton alters the state and visual appearance from

"not crossed" to "crossed" ("not bulleted" to "bulleted" in case of a radiobutton) or the other way around,

respectively. Using a combobox, the framework takes care of highlighting clicked entries, dropping down

and displaying entries as well as scrolling them with an associated scrollbar; the programmer has to provide

the text of the entries.

42

www.manaraa.com

WinWidgets Custom Control package. This is a big advantage ofRW and the reason RW

was chosen instead of AppStudio.

But there are also several disadvantages using RW a programmer must be aware

of, especially when he is already used to working with AppStudio. As correct handling

requires only minor effort, RW is still the appropriate choice.

RW does not support automatic control name numbering as supported by

AppStudio. Thus, the programmer has to check frequently the integer values as

#define'd in resource. h. You should not use integer values more than once, because

the compiler will resolve to the visual controls according to these values. You might lose

track of which value you already used. Furthermore, you will have to use AppStudio as

well as RW , and thus have to adjust manual numbering as necessary with RW to

automatic numbering as supported by AppStudio. This basically limits you to which

integer values you can use; refer to the AppStudio User's Guide provided with the MSVC

help files for further information, and check some resource . h files as reference.

It also might happen that RW complains about AppStudio-processed *.rc resource

files. There are two possible reasons for this. The first is due to an AppStudio or RW bug:

several lines in the resource file are copied twice into the edited file, thus making correct

processing impossible. Just delete those lines with a normal text editor; RW will

complain about this error with a line number as reference. Second, a #define used and

sometimes discarded by AppStudio may prevent RW from correctly processing it. Just

#define it again in the resource file, and RW will process just fine.

11

This will happen when you have to rebuild the ClassWizard database (*.clw) in order to let it

recognize non-MSVC classes (as used with WW). In this case, you will have to invoke AppStudio prior to

ClassWizard, because ClassWizard's database relies on correct resource file entries. Sometimes processing

errors might occur when invoking a RW-edited *.rc resource file from within AppStudio. Most of the times

this is because of some additional *.h header files were not included in an AppStudio-conform way.

43

www.manaraa.com

4. Using the Online Help and the Contents Browser

As development platforms such as MSVC are very complex applications, hardly

any programmer can memorize all classes, their methods, their parameters and return

values (there are a couple of hundreds of them). Either a programmer has kilograms of

books right beside him while programming, or he makes use of the built-in online help

capability. In fact, the most convenient way is a combination of both.

There are two kinds of information you might want to obtain while developing an

application. First, information about Windows functions, C/C++ features and other things

already shipped with the compiler. Use the Online Help for that information. Second,

your self-programmed variables, structures, classes and methods. For this kind of

information, use the Contents Browser.

Invoke the Online Help with the Fl key while the cursor is placed over a method

or a defined variable, a C/C++ keyword or any other code you expect to be considered in

the help database. However, Visual Workbench will tell you very soon whether it

recognizes the data beneath the cursor or not. For example, if you want to know more

about the class CString (which could be completely unknown to you now, but which

you really should try to learn more about), just place the cursor somewhere in the word

CString and press Fl. Another way to access the online help is via the Help menu. You

can read all information available on paper for MSVC with Books Online (if you have

the CD version of MSVC 2.x). Other useful information can be found in the various

Hierarchy Charts, which are a good place to start for general information about MFC and

its classes. The online help will become a very helpful tool for you while developing your

application.

Naturally, you will not get a full description of your own code unless you wrote a

couple of lines about it. What you can get from the Visual Workbench is the location of

44

www.manaraa.com

12 13
the declaration " and the definition of your code. Use the Fll key from within the

Visual Workbench while the cursor is placed over the code you want to obtain the

declaration from, or Shift-Fll for the definition. Every time you compile your

application, a new browser database is created to reflect the latest changes to variable

declarations and definitions. You can switch this feature on or off in you Project settings

(Project/Settings . . . , tab C/C++, checkbox Generate Browser Info).

Declaration: letting the compiler know of what type the variable is. Does not use any memory.

Example: int i ; declares a variable named i as of type int. The Visual Workbench uses the

expression "Definition" for that matter.

lj
Definition: assigning a value to a variable which previously has been declared. Uses the

amount of memory the variable type uses. Example: i = 100 ; allocates 2 bytes (under Windows 3.x)

or 4 bytes (under Windows NT) of memory to store an integer variable of value 100 in that memory, and

letting the programmer refer to it as i. The Visual Workbench uses the expression "Reference" for that

matter. C and C++ allow mixed declarations and definitions: int i = 100;.

45

www.manaraa.com

V. PROGRAMMER' S REFERENCE

This reference describes the programming of the PANSAT Software

Groundstation. It contains a much more detailed description of the actual procedure to

program Windows or Windows NT with C++ than other chapters. Thus, you should

already be familiar with all preceeding chapters, programming in a high-level language,

especially in C or C++, and exhibit an advanced knowledge about graphical oriented

operating systems, commonly used data structures and programming techniques.

A. THE GROUNDSTATION DOCUMENT

The groundstation document is not only placed in the CDocument derived class

of the gnd application, but expands to some other structures whose implementation could

be found in the gnddoc.cpp file also, as they logically belong to the application's

document. Because all of these additional structures must be accessible from every class

of the application, they are defined globally and statically in the gnd.h file (which is

included into every *.cpp file created by AppWizard by default).

1. Classes and Structures

A class encapsulates data and functions (they are called methods when they are a

part of a class) in one structure. This is a simple, but very effective way to keep data and

functions accessible only from where an access makes sense, that is, only within the class

for which they are defined. A structure in the original meaning is just an

encapsulation of data, that is, variables and/or substructures. The C++ language expands

Static variables only use one memory location, no matter how often they are declared and

defined. This ensures that every method using this variable uses exactly this variable and not a locally

defined other variable with the same name. Static variables use the C/C++ static keyword before their

type identifier: static int i ; declares a static variable named i of type integer.

46

www.manaraa.com

this meaning allowing C++ struct' s to be equivalent to a class: not only data members,

but also functions (methods) can be encapsulated in structures.

The only difference between class'es and struct's is the default access

behaviour. Certain C++ keywords determine the accessability of data members or

methods (furthermore referred to as "members
1

'): public, protected, and private.

They determine whether non-class methods can access class members, and how they are

accessed in aerived classes. Refer to the online help for further information.

The most important structures belonging to the document are not part of the

CDocument derived class CGndDoc because they deserve unique structures. These are

the PCL output structures struct SMacro, struct SCmd and the PCL input structure

struct SReturnCmd. They contain all necessary members to cope with the problem of

sending, receiving, storing and loading data from and to disk, and from and to PANSAT

via the serial interface. Furthermore, all necessary information about PCL is stored in the

program command database inside the definition of struct SDocumentCmd. Both

the structure declaration struct SDocumentCmd and its definition (named DocCmd)

can be found in Gnd.h, like all the declarations of the structures mentioned above.

2. The PCL Output Structures

The PCL output structures struct SMacro and struct SCmd are based on the

information given by the program command database stored in const static

SDocumentCmd DocCmd [] . In this chapter the following questions will be answered:

What is a macro, what is a script? What is a command?

What are the contents of the program command database?

How does PCL output work with the macro and command structures?

•

47

www.manaraa.com

a. The macro/command relationship

A command is one (1) PCL command and its parameters, if applicable. A

macro is a sequence of commands. A script is a sequence of commands including at

least one script command16
. The C++ structures used for representing this

relationship are struct SMacro and struct SCmd:

PCL command: every command recognized in the program command database which represents

a command to PANSAT.

Script command: every command in the program command database which is not intended to

be sent to PANSAT, but controls the groundstation software. No script command is implemented yet.

48

www.manaraa.com

struct SMacro

{

public

:

SMacro ()

;

SMacro (int nlndex);
SMacro (const char *pName)

;

virtual ~SMacro();
public

:

virtual int Load()

;

virtual int Save ()

;

virtual int Overwrite ();

virtual int Execute ()

;

virtual int GetError();
BOOL IsScript()

;

protected:
BOOL m_bHasChanged;
int nError;

private:
const char *GetFileName ()

;

BOOL SetFileName (const char *pName)

;

const char *GetMacroName ()

;

void SetMacroName (const char *pName)
private

:

CString FileName;
CString MacroName

;

CPtrArray and;
BOOL m_bHasFileName;
BOOL m_bIsBuiltIn;
BOOL m_bIsScript;

friend class CCHScriptsDlg;
};

struct SCmd : public SMacro

{

public:
SCmd() ;

SCmd (int nlndex)

;

~SCmd()

;

public

:

int8 cmd;
intl6 wParam;

long lParam;
void *ptr

;

public

:

virtual BOOL Load (void *fh)

;

virtual BOOL Save (void *fh)

;

virtual BOOL Execute (void *fh)

;

protected:

49

www.manaraa.com

virtual long GeneratePassword ()

;

BOOL Readstring (void *fh, long *pLong, int *pnErr)

;

BOOL WriteString(void *fh, char *pchar, int *pnErr)

;

};

SCmd is derived from SMacro and thus "knows" about everything what is

derivably defined in SMacro. The SCmd structure has to comply with several

requirements:

• Store every possible command in an identifiable manner,

• Provide storage capability for every possible parameter or combination thereof for

every possible command,

• Provide disk I/O functionality to save or load one (1) command from or to disk,

• Feature serial output for one (1) command.

These goals are achieved by the various members of the SCmd structure.

Furthermore, it contains several more members to construct a command, generate a

password (if applicable) and simplify disk access. The four members cmd, wParam,

lParam and ptr serve as storage for every possible command (member cmd) and its

parameters (members wParam, lParam and ptr), the latter of which represent data types

and structure pointers according to the entries in the program command database (see

"The Contents of the Program Command Database").

Disk I/O is done by the methods Load and Save; command execution (which is

very similar to disk I/O functionality except that data is sent to COM1) is performed by

Execute. These three I/O methods require an already opened I/O channel whose handle

they take as the only parameter (void *fh, fh: File Handle). This task is completed by

the SMacro structure described below. The file routines used here are part of Windows

and Windows NT. For more information about programming with these routines, refer to

"The Implementation of the Output Structures" discussed later in this chapter.

50

www.manaraa.com

SMacro is the more general one of the output structures. It takes care of several

file and data channel maintenance tasks:

• Opening and closing the I/O channels for disk I/O and/or serial output,

• Provide storage for the filename associated with this macro and the macro name and

means to change those names,

• Prevent the user from involuntarily erasing altered macros,

• Provide the programmer with an easy error handling capability,

• Provide means to store a virtually unlimited amount of commands (each represented

by a SCmd structure).

These goals once again are achieved by the various members of SMacro. The two

disk related methods Load and Save use the Windows Common Dialog Box feature to

present dialog boxes to open an I/O channel for loading or saving data from or to disk.

Refer to [Ref. 2] for further information. The actual load or save procedure then can be

conducted by invoking the Load or Save method of SCmd; this is done for every

command that this macro contains, so the whole sequence of commands can be loaded or

saved. The SMacro-method Execute works similar to that: it just opens the I/O channel

to COM1 and leaves the rest to the SCmd Execute method.

SMacro owns two data members in which the macro name and the filename of

the macro are stored: CString MacroName and CString FileName. This class

provides the programmer with a dynamically length-adapted string storage as well as

many useful methods for string handling and conversion. The CString class as part of

the Microsoft Foundation Classes (MFC) General Purpose Classes is subject to a closer

discussion later in the text. The four SMacro members GetFileName, SetFileName,

GetMacroName and SetMacroName offer easy methods for the programmer to retrieve

a string (Get... members) from the user and store it into the CString data members

MacroName and FileName (Set... members).

51

www.manaraa.com

The BOOL member m_bHasChanged should always be set to TRUE everytime the

macro has been changed. The disk I/O methods Load and Save as well as the class

destructor check for this boolean variable prior to erasing operations and thus prevent

from involuntary data loss. The programmer is responsible for setting this variable to the

appropriate value every time edit or storage actions have occurred.

Many errors might occur during I/O actions. Especially the Load, Save and

Execute methods contain a multitude of I/O actions; thus, they contain several error

checks. The integer return values of those functions refer to the ErrAry text array

(Gnd.h). They represent the zero-based index of the string entries in this text array.

So far, no members of SMacro refer to a PCL or script command or their

parameters. This is done on purpose because the SCrad structure already covers that whole

problem. As multiple commands can be part of a macro, SMacro contains the

CPtrArray cmd member to provide means for storage. It provides a dynamically

growing (or shrinking) array of pointers to whatever you want pointers to (to SCmd

structures in this case). The CPtrArray class is part of the MFC Collection Classes and

subject to later discussion.

b. The Contents ofthe Program Command Database

The program command database is located in Gnd.h and consists of the structure

declaration

struct SDocumentCmd
{

char *command

;

int8 cmdID

;

int flags

;

int wParam_Type

;

int lParam_Type;
int return_Type

;

};

and the structure definition (excerpt)

52

www.manaraa.com

const static SDocumentCmd DocCmd[] =

{

{ "add_command" , 0x01, FPCL| FSUPER| FPASS

,

TVOID | TQ_CMDPTR, TL_UTC , TVOID}

,

{"add_task ,?
, 0x02, FPCL| FSUPER| FPASS

,

TQJTASKPTR, TVOID, TVOID},
{ "boot_rom" , 0x03, FPCL | FSUPERI FPASS

,

TVOID, TVOID, TVOID},

};

The six parameters of this structure contain all information necessary for the I/O

classes to perform successfully. The char *command member contains a pointer to the

plain command string, the int8 cmdlD member (an eight-bit integer, Microsoft-

specific data type) the according command identification value. The third member

int flags is a value of OR/ able #define's also found in Gnd.h: all those

commencing with an F. The last three members contain type information about the

variable which is about to be stored in the SCmd members wParam and 1Param as well as

the SReturnCmd member ptr. The appropriate #define's all start with T indicating a

type identifier. Refer to the comments added to the source text in Gnd.h for further

information.

c. The Implementation ofthe Output Structures

The most important thing about the output structures SCmd and SMacro are the

I/O function calls. The structure implementation resides in the GndDoc . cpp source file.

You can find out more about the used methods in [Ref. 3] and [Ref. 4]. However, first

you want to learn more about CreateFile, ReadFile and WriteFile first.

At first glance, the SCmd member functions Load, Save and Execute look

identical. However, there are a few differences. The disk I/O methods do not have to save

or load passwords because they are only needed when uplinking commands to PANSAT.

Therefore, only the Execute method uses password generation via a

GeneratePassword method call. As one would assume, Load uses ReadFile calls,

whereas Save uses WriteFile calls. For easier loading and saving of strings from and

53

www.manaraa.com

to disk, the SCmd structure features ReadString and WriteString methods which are

invoked similar to ReadFile and WriteFile.

All case branches refer to the according entries in the program command

database. Any addition or change to it might also require changes to SCmd structure

members Load, Save and Execute. A database-independent implementation would

have been too complicated.

For some commands it is necessary to provide an additional structure as parameter

whose pointer is stored in the SCmd member ptr. Therefore, all type definitions in

Gnd.h starting with TQ_ define which structures may be used for this purpose. So far, the

SCmd structure itself can be used (for the add_command PCL command) as well as the

yet to be defined STask and SOSParams structures.

CPtrArray c struct S Macro

cmd

struct SCmd

cmd

wParam

IParam

Pointer To

custom structure,

memory block

Figure 15: Implementation principle of the SMacro and SCmd structure

Figure 1 shows how the SMacro and SCmd structure is implemented into the rest

of the application environment. The highest level of the hierarchy consists of a

CPtrArray in which pointers to SMacro structures are stored. The CDocument-derived

class in groundstation contains two of them:

• CPtrArray c (for command). This CPtrArray contains the pointers to all SMacro
structures necessary to hold all PCL commands and their parameters which are

54

www.manaraa.com

accessible from within the groundstation application. Currently, every groundstation

accessible macro consists ofjust one command, but as it is a SMacro macro, it could

hold multiple commands with no additional programming necessary.

CPtrArray m (for macro). This class contains the pointers to all SMacro structures

used for the macro feature of the groundstation. This feature enables the user to

define and execute-by-click commonly used macros.

As described above, the SCmd member ptr points to a memory block or structure

as defined in the program command database by the type qualifier TQ_ - #define"s

(located in Gnd.h). Because this type qualifier is stored in the program command

database, all the programmer has to know is the command ID of the desired command to

find out about the correct memory block or structure to be referenced by ptr. This

determines in all cases how to handle the PCL command, its parameters and return

values, if applicable.

3. The PCL Input Structure

The PCL input structure SReturnCmd is declared as

struct SReturnCmd
{

_int8 cmd

;

intl6 size;
void *ptr

;

>;

This will allow every data structure to be downlinked from PANSAT not to

exceed 65535 bytes. The int8 cmd contains the command identifier according to the

program command database and indicates the PCL command whose receipt made

PANSAT downlink a portion of data. Before sending the actual data, PANSAT sends the

length of that data as a 16-bit-value which can be stored in _intl6 size. This

information, together with the command identification and the program command

database, enables the groundstation software (the SReturnCmd members, in this case) to

determine how the following data portion downlinked from PANSAT shall be

55

www.manaraa.com

interpreted. The structures SRFile, SRCommandBuffer, SRTask, SREvent,

SRTelemetry and SROSParams are declared to serve as containers for that downlinked

data. When extending or changing PCL, it might be necessasry to change parts of those

structures or add new ones. You should comply to the convention of naming those

structures starting with SR (Structure Return).

So far, any implementation of the input structure and the return container

structures is undecided; the existing structure declarations, however, should serve as a

sensible starting point for further development.

Data input must take place in an interrupt procedure because the groundstation

software cannot constantly poll the COM-port when expecting an answer from PANSAT.

In Windows terms, interrupt I/O is called overlapped I/O. The well-known

CreateFile method features overlapped I/O capability. You can find out more about

the appropriate methods in [Ref. 4] and [Ref 5]. After reading the overview of these

chapters, you should learn more about the WaitCommEvent function next.

4. The Evaluation Process

Because every implemented method cannot completely be evaluated for correct

functionality yet nor is all coding complete, the following list might be helpful for

programmers who need to continue the programming:

• Check the SCmd and SMacro structures for correct disk I/O and COM-port access.

Refer to the contents of this chapter up to this point for further information and

references.

• Implement overlapped port I/O into SReturnCmd and check it for correct

functionality. You might have to use small additional evaluation programs for this.

• Learn about programming WinWidgets and implement the functionality for all tabbed

dialogs. Refer to the "Groundstation User's Manual" for how these tabbed dialogs are

supposed to work. Refer to "Using WinWidgets' Tabbed Dialog" and the already

implemented functionality for the Scripts tabbed dialog for how to program tabbed

dialogs and WinWidgets visual controls.

56

www.manaraa.com

• Learn more about ODBC-compatible programming in order to store all downlinked

telemetry in this format. Refer to [Ref. 7] for complete information and [Ref. 8,

Chapter 24-27] for a sample ODBC-compatible application.

• Implement additional script language features. Programming the GUI might have

given you the appropriate information to continue development.

B. PROGRAMMING TECHNIQUES USED FOR THE

GROUNDSTATION

The following is a short description of important programming techniques which

were used to program the groundstation. This description could be very useful both for

understanding how the groundstation software has been implemented and as a reference

for your own programming. I chose the topics in order to provide an independent and

reusable overview of a section of code.

1. Using WinWidgets'

Tabbed Dialog

Tab1 Tab2 Tab3

This is a sample tabbed
dialog with 3 tabs

Figure 16: A sample tabbed dialog

This section describes how to

implement the very useful tabbed dialog

as part of the WinWidgets Custom

Control package. Refer to [Ref. 9] for

further information. A tabbed dialog

looks like Figure 16. It consists of one outer dialog and three inner dialogs (for this

example; one outer dialog may contain more inner dialogs). The outer dialog is derived

from the WW class CTabDIg, whereas the inner dialogs are derived from

CTabDlgChild. As a summarization of [Ref. 9], follow these steps to create and

implement a tabbed dialog with WW:

57

www.manaraa.com

• Create each inner dialog and the outer dialog with AppStudio (not RW!) as separate

dialogs.

• Use ClassWizard to create a new class for every inner and the outer dialog. Use

CDialog as the base class. Refer to [Ref. 10] regarding how to use ClassWizard.

• For the groundstation application view class declaration (recommended, GndView . h

in this case), insert the following:

class CGndView
{

public CView

public:
CMainTabDlg
CCHScriptsDlg
CCHTelemetryDlg
CCHMailDlg
CCHMemoryDlg
CCHControlDlg
CCHOSControlDlg
CCHFileSystemDlg

*m_pTabDlg;
m_ChDlgO

,

m__ChDlgl
m_ChDlg2
m_ChDlg3
m_ChDlg4

ChDlg5
ChDlg6

m
m

CCHTaskControlDlg m ChDlg7

// derived from CTabDlg
// derived from CTabDlgChild

}

• In each *.cpp source and *.h header file created with ClassWizard, replace every

occurrence of CDialog with either CTabDlg (for the outer dialog) or

CTabDlgChild (for the inner dialogs). Rebuild the *.clw ClassWizard database file

so ClassWizard can recognize the new WW classes.

• Program all dialog characteristics using the PreSetTabCtrlxxx and

PreCreateTabCtrllnit methods according to [Ref. 10], if applicable, and

encapsulate all dialog specific processing in the appropriate dialog class.

• Add the display code into your view class implementation file (recommended; in this

case, in GndView . cpp). Use the CTabDlg: :AddChildDialog method to attach

every inner dialog to the outer dialog. Invoke the CTabDlg: :DoModeless method

for a modeless display of the tabbed dialog (recommended). Define a view member
variable (m_bTabDlgUp) to determine whether the tabbed dialog has already been

instantiated.

58

www.manaraa.com

void CGndView: : OnUserAccess ()

{

if (! m_bTabD1gUp

)

{

m_pTabDlg = (CMainTabDlg*) new CMainTabDlg (this)

// add child tabs to tab dialog internal list
m_pTabDlg->AddChildDialog (CCHScriptsDlg: : IDD

,

(CTabDlgChild *) &m_ChDlgO)

;

m_pTabDlg->AddChildDialog(CCHTelemetryDlg: : IDD,
(CTabDlgChild *) &m_ChDlgl)

;

m_pTabDlg->AddChildDialog(CCHMailDlg: : IDD,
(CTabDlgChild *) &m_ChDlg2)

;

m_pTabDlg->AddChildDialog (CCHMemoryDlg: : IDD

,

(CTabDlgChild *) &m_ChDlg3)

;

m_pTabDlg->AddChildDialog(CCHControlDlg: : IDD,
(CTabDlgChild *) &m_ChDlg4)

;

m_pTabDlg->AddChildDialog(CCHOSControlDlg: : IDD,
(CTabDlgChild *) &m_ChDlg5)

;

m_pTabDlg->AddChildDialog (CCHFileSystemDlg : : IDD

,

(CTabDlgChild *) &m_ChDlg6)

;

m_pTabDlg->AddChildDialog(CCHTaskControlDlg: : IDD
(CTabDlgChild *) &m_ChDlg7)

;

// fire off tab dialog
m_pTabDlg->DoModeless (CMainTabDlg: : IDD , this)

;

m bTabDlgUp = TRUE;

The destruction could look somewhat like this:

59

www.manaraa.com

CGndView :
: ~CGndView (

)

{

// destroy tabbed dialog
if (m_bTabDlgUp)

{

m_pTabDlg->DestroyWindow()

;

delete m_pTabDlg;
m_bTabDlgUp = FALSE;

}

}

• There are also three notification messages for handling the creation, activation and

deactivation of the child (inner) dialogs. Refer to [Ref. 9] and the TABDEMO sample

application provided with the WinWidgets package.

2. Using WinWidgets' HotLink

Refer to [Ref. 11, Hot-Linking the WinWidgets to Data and Connecting the

WinWidgets to Data] for detailed information. HotLinking is WinWidgets' capability to

automatically update certain data types as a result of a user modifying certain visual

controls. The advantage of using HotLinking instead of installing a message handler is

that it takes less programming effort to settle it. If you wanted to change the contents of a

variable according to a user click, you normally would have to:

• write a message handler into a window function,

• attach the window function to a visual control via a message-map entry, and

• expand the class declaration with an afx_msg entry of that window function.

For small changes like changing just one's variable contents this would be too

much programming effort. WinWidgets allows HotLinking (under certain restrictions

depending on the type of the variable) using the WW SetDataLink method as shown:

60

www.manaraa.com

WORD m_hlEditMode;

BOOL CCHScriptsDlg: : OnlnitDialog ()

{

CHBRadio *pEditMode
(CHBRadio *) GetDlgltem (IDC_SCRIPT_NORMALEDIT)

;

pEditMode->SetDataLink(TRUE, &m hlEditMode)

;

3. Using *.ini Files

The concept of *.ini files allows applications to save user-definable data as

ASCII-text to a file with an *.ini extension located in the SYS:\Windows (or

SYS : \WinNT35) drawer. This data can refer to a recently used file list, shown dialogs, or

some kind of preferences the user does not want to define over and over again every time

he launches the application. Thus, use of *.ini files makes application handling easier and

more convenient for the user.

Windows offers basically two functions which support *.ini file handling:

GetProfileString and WriteProfileString, both encapsulated in the MFC

CWinApp class. Refer to [Ref. 12] for a detailed description of these functions. For the

groundstation application, this *.ini file feature is implemented as shown in the following

code segments:

61

www.manaraa.com

in Gnd . cpp

:

CGndApp : : CGndApp (

)

{

m_pszAppName="PANSAT Ground Station";
m_ps zProfileName="Gnd. INI";

}

in Gndview . cpp

:

CGndView : : CGndView (

)

{

int i ;

strSectionDir = "Directories";
strSectionExt = "Extensions";
strSectionDscrpt = "Descriptions";

CGndApp *pApp = (CGndApp *) AfxGetApp ()

;

for (i=0; i<MAXDIRS; i++)

{

PFI[i] .Dir = pApp->
GetProfileString (strSectionDir, def [i])

;

PFI[i] .Ext = pApp->
GetProfileString (strSectionExt, def [i])

;

PFI[i].Des = pApp->
GetProfileString (strSectionDscrpt, def [i])

;

}

}

First, Windows has to know about the full name of the *.ini file. The constructor

of the application class is a good place to define it (the name is Gnd . ini for this

application). To retrieve data from that file (assuming we already have meaningful entries

in it), the GetProfileString method is used. The strXXX variables are MFC

CString class instances in which you can store strings (see below "MFC Class

CString"). In order to access the CWinApp-derived class of your application, its pointer is

retrieved and stored in pApp. GetProfileString takes two strings as parameters: first,

the name of the section, and second, the name of the entry as used in Gnd. ini. The

return value is the specific string referred to by those two parameters. The following

declarations and definitions provide this functionality:

62

www.manaraa.com

in Gnd . h

:

struct PANSATFilelnfo
{

CString Dir;
CString Ext;
CString Des

;

};

const static char *def[] = {"Script", "Macro", "Telemetry",
"Userlog", "Task", "In",
"Out"}

;

const static int MAXDIRS = sizeof (def) /sizeof (char *)

;

in Gndview . h

:

CString strSectionDir

;

CString strSectionExt

;

CString strSectionDscrpt;
struct PANSATFilelnfo PFI [MAXDIRS]

;

With the above code, the following Gnd . ini file can be read by the application:

63

www.manaraa.com

[Extensions]
Script=* . PSF
Macro=* . GMD
Telemetry=* . TMY
Userlog=*.USL
Task=* . PTL
In=* . IN
Out=* . OUT

[Directories

]

Script=D : \Ground\Script
Macro=D : \Ground\Macro
Telemetry=D : \Ground\Telmetry
Userlog=D : \Ground\Userlog
Task=D : \Ground\Task
In=D : \Ground\IN
Out=D : \Ground\OUT

[Descriptions

]

Script=PANSAT Script File
Macro=Macro Definition
Telemetry=Telemetry Data
Userlog=User Log
Task=PANSAT Task List
In=IN Data
Out=OUT Data

Everything on the right side of the equal sign is stored into the appropriate

members of the PFI structure. In case you want to store to instead of retrieve data from

the Gnd . ini file, use code as shown below:

int i ;

for (i=0; i<MAXDIRS; i++)

{

pApp->WriteProfileString(strSectionDir , def[i], PFI [i]. Dir);
}

This writes MAXDIRS entries from the PFI[] .Dir string array after the equal

sign following the string referred to in def [] in the [Directories] section of the

Gnd . ini file. The sequence of strings in the Gnd . ini file does not necessarily have to

be in the same order as the strings in the PFI[] .Dir. The XXXProfileString

functions will always resolve to the entry according the string defined by def [] (for this

64

www.manaraa.com

example), not its index. This makes it even more convenient for the programmer to make

use of *.ini files. With the MFC CString class both the use and the programming of

*.ini files becomes a comparably easy task to accomplish.

4. MFC Class CString

The purpose of the MFC helper class CString is to simplify both memory

allocation and string alteration. Refer to [Ref. 13] for a full description and explanation of

the very useful methods of this class.

Why use a special class for strings when C/C++ already offers char

string [n] 's? Because those variables are of fixed length, whereas CString instances

may dynamically vary in length. This relieves the programmer from the repetitive and

error prone task of checking for string boundaries, memory availability and dynamic

memory allocation procedures and maintenance routines. With CStrings, none of these

tedious operations need to be coded by the programmer. Overridden operators such as =,

+, += allow easy assignment and concatenation of strings to CString objects.

Extraction and conversion routines make string alteration easy, as well as methods for

comparing, searching and archiving strings.

The use of CString objects instead of char strings is strongly recommended.

Try to replace every occurrence of the old-fashioned array of char by a CString object

unless you definitely do not intend to change either the length or the contents of the

string.

5. MFC Class CPtrArray and its Neighbors

In almost every application you will encounter the problem to store data structures

and erase or edit some or all of them. Normally, it will not be known how many instances

of a particular data structure are needed during development or compilation time.

Memory as well as performance constraints thus will lead to a dynamic allocated and

65

www.manaraa.com

released system of data structures. This will probably include linked lists and many

pointers. However, this task can be left to one of the various MFC CPtrArray classes

and its neighbors. Learn more about CPtrArrays from [Ref. 14]. Refer to a description

for "Collection Classes" (a CPtrArray) in the same manual.

What kind of class is the best for your specific data structure storage problem?

The answer to this question can only be found in your specific data structures and the

needs imposed on your code to behave correctly. A short overview might be of assistance

when browsing through the help files for Collection Classes. There are three basic ways

of data storage supported by those classes; however, one thing is common to all of them:

the programmer never has to worry about memory allocation or deallocation. The three

different kinds of storage are:

• The array. It will behave like a zero-based C array, its members thus are accessable

by their index. The array itself will grow or shrink as items are added or removed.

The array can contain bytes, words, doublewords, strings, generic pointers and more

variable types.

• The list. It will behave like a doubly-linked list in C. The list can contain strings,

generic pointers, pointers to CObject classes and other variable types.

• The map. This involves variable types called elements which are values you attached

a unique key to. Every value then is referenced by its key. Every map collection class

is named CMapXXXToYYY, where XXX represents the key and YYY the value

referenced by the key.

you The use of one or more of these collection classes is highly recommended

because they will make programming of arrays, lists and mappable variables significantly

easier. Spend one hour to get familiar with these, and save many more while

programming them.

C. BUG REPORT

This is a somewhat arbitrary collection of bugs, programming errors, runtime

failures and other nasty problems that could happen to your application while developing.

66

www.manaraa.com

They might considerably help locating bugs in a matter of minutes rather than days or

even weeks. I would personally suggest that you write down the bugs YOU encountered

for your personal records: including a short note, a description of the error and your

workaround or whatever was helpful.

Nobody does it, everybody should: use comments*. If you plan to develop an

application for more than three weeks, you should comment your source files as precisely

as you can. I can assure you would REALLY regret it after two months of development.

Trust me!!

For further specific information on a topic check [Ref. 6] and browse through the

headings.

1. Mysterious Syntax Errors While Using #define's

You might want to check if you terminated your ttdefine's with a semicolon; if

so, delete the semicolon. Otherwise you will get error messages like

error C2143
error C2059
error C2181

syntax error : missing '
)

' before
syntax error : '

)

'

illegal else without matching if

2. Access Violations Due to Bad Memory

This occurs most likely not because of defective RAM, but because you forgot to

allocate memory for your object. This is not as obvious as it normally should be,

especially when memory allocation is hidden somewhere in the framework.

Example: you created an AppWizard-application and tried to access CDocument-

derived class members from within the CView-derived class constructor. This will fail

somewhere in the framework source files with an Access Violation, failed ASSERT

67

www.manaraa.com

statements or other error codes related to CDocument-derived class access, or, in the

worst case, during runtime with a system crash.

The application does not run anymore because at the time the CView-derived

class constructor is running, the CDocument-derived class is not yet created in memory.

Thus, your code in the constructor relying on an existing CDocument-derived class just

accesses random memory addresses, and fails somewhere when the randomly accessed

memory contents does not make sense any more. This normally occurs quickly, but

former CDocument instances could mislead your application, so you might encounter

randomly running and crashing application behaviour.

This is a very ugly thing when it happens, so how do you find out about it

beforehand? Normally, you will not be able to prevent yourself from programming such a

nasty bug, unless you know exactly when classes are instantiated relative to others. This

information is hidden sometimes in the Overview or General Information section in the

online help for classes, but more often you will not find anything about it there. If so,

look at the methods provided with these classes, and you will find one or more names

indicating an initialization or presetting of member variables or class structures. Read the

help text for those methods, and most likely you will find sentences like "This function is

invoked after XYZ has been constructed, but just before ABC is shown.". The best place

to look for such a method is to browse through the class "Initialization" and

"Overridables" section. If this explanation sounds like a solution to your problem

(remember, you do not really know why your application crashes all the time, you are just

poking around suspiciously), just put those lines of your code which you expect to be the

faulty ones (again, another thing to figure out) in an overridden instance of that specific

method. This will clear everything after just minutes of work, if you guessed everything

right. And, in the future you will be wiser.

68

www.manaraa.com

3. AppWizard Does Not Recognize Your Classes

This is a problem that occurs sometimes when classes, which are not part of MFC

or MFC derived classes, are used. In this case, delete the *.clw file from your

development directory. All information that describes how ClassWizard needs to perform

its actions is stored in this *.clw file. Before you can run ClassWizard again, the database

must be reconstructed. This takes only a few seconds and could be achieved by following

two steps: first, open the *.rc resource file from within the Visual Workbench. The

MSVC built-in dialog editor AppWizard starts up and processes your resources. From the

main menu, choose Project/classWizard and affirm the upcoming dialog box. Then

a dialog box with the current project files comes up. You may specify additional source

files whose contents you wish to be recognized by ClassWizard, but normally you just

affirm the default settings. After that, the *.clw ClassWizard database is regenerated, and

it now contains all class information including even the non-MFC classes and their

derivatives.

Sometimes you might not be able to use the ClassWizard Message Map

maintaining feature; ClassWizard does not offer Add Function for previously defined

visual controls, even if you rebuilt the *.clw database file like described above. If so, you

have to manually implement all the changes ClassWizard would have done for you

automatically (described in "Using ClassWizard to Change Your Application").

4. Globally Defined Variables Are Not Recognized

You might encounter the problem that your globally defined variables are not

recognized in classes you added to the project, even though you #include'd every

necessary file into the class implementation, and neither the compiler nor the linker

complained about undefined variables. This seems to be a compiler problem; however, I

never experienced it before I started developing the groundstation application.

69

www.manaraa.com

How do you learn about this error? The compiler and linker know about the global

variable, but during runtime, just another address is resolved. This results in unexpected

program behaviour of some kind related to that global variable - nothing new during the

development phase. That this error exists can usually easily be discovered by invoking

the QuickWatch feature while debugging the program (Debug/QuickWatch or Shift-F9

with cursor over the variable in question, or typing it in into the upcoming dialog box).

The solution is easy: define a member variable of the same type (or a pointer to it)

in the class in which you want to use the inaccessible global variable, and set it to the

value (or the address, in case of a pointer variable) of the global variable from within your

CView- or CFrameWnd-derived class of the application.

70

www.manaraa.com

VI. CONCLUSION

This thesis demonstrates that software development of a complex Windows-based

application could be accomplished with satisfying results. For the implementation of the

complete functionality of the PANSAT Software Groundstation, however, further

development will be necessary. This thesis does not only discuss the Software

Groundstation, but also provides the reader with the information necessary to develop

other Windows-based C++ applications using MSVC and the various additional tools.

Software development is a delicate task. Poor conceptual design in the beginning

can result in disastrous conditions during and after development. That is why most of the

time and effort should be spent in defining the appropriate data structures and the

conceptual design. Most often, errors because of poor conceptual design can only be

corrected with a vast amount of time and manpower (that is, money), if at all. Thus, a

certain portion of detail must be provided during this phase, otherwise the effort will be

worthless.

This thesis also shows that software development will soon become a team effort,

once the conceptual design reaches a certain complexity. Although only one person may

actually code the program, he will be dependent on the technically funded inputs of his

co-workers, as software usually puts a multitude of engineering tasks in one single

environment.

71

www.manaraa.com

VII. LIST OF REFERENCES

1. WinWidgets/32 Programming Guide and Reference Manual, Lifeboat Publishing,

1994

2. Win32 Programmer's Reference, Volume 1-2 Overview, Chapter 76: Common
Dialog Box Library, MSVC Books Online

3. Win32 Programmer's Reference, Volume 1-2 Overview, Chapter 45: Files, MSVC
Books Online

4. Win32 Programmer's Reference, Volume 1-2 Overview, Chapter 68:

Communications, MSVC Books Online

5. Win32 Programmer's Reference, Volume 1-2 Overview, Chapter 44:

Synchronization, MSVC Books Online

6. MFC, MFC Technical Notes, MSVC Books Online

7. ODBC 2. SDK, MSVC Books Online

8. Introducing Visual C++, Microsoft Corporation (installation manual shipped with the

MSVC Compiler), 1994

9. Tab Dialog Classes (MFC): CTabDlg and CTabDlgChild, WinWidgets Manual - Tab

Control - Tab helper classes

10. User's Guides, Visual C++ User's Guide, Part 1: Using Visual C++, Chapter 12:

Using ClassWizard, MSVC Books Online

1 1

.

WinWidgets Manual, Online Manual

12. MFC, Class Library Reference, class CWinApp member functions, MSVC Books

Online

13. MFC, Class Library Reference, class CString, MSVC Books Online

14. MFC, Class Library Reference, class CPtrArray, MSVC Books Online

15. Gregory Wade Lawrence, Preliminary PANSAT Ground Station Software Design and

Use ofan Expert System to Analyze Telemetry, Master's Thesis, Naval Postgraduate

School, Monterey, March 1 994

72

www.manaraa.com

16. Troy M. Nichols. A Description of the PANSAT Command Language, Master's

Thesis, Naval Postgraduate School, Monterey, September 1995

17. BekTek Spacecraft Operating System, SCOS Reference Manual, AMSAT-NA
Microsat and UoSAT OBC186, December 1992

73

www.manaraa.com

VIII. APPENDIX

A. APPLICATION SOURCECODE

Gnd.h Static variables/data structure (SCmd/SMacro) include file

Gnd. cpp Application file implementation file

GndDoc.h Groundstation Document include file

GndDoc.cpp Groundstation Document and SCmd/SMacro implementation file

GndView. h Groundstation View include file

GndView. cpp Groundstation View/Message Map & Handler implementation file

MainFrm. h Groundstation Main Frame include file

MainFrm. cpp Groundstation Main Frame implementation file

Gnd.h

// Gnd.h : main header file for the GND application

//

// CAOTICN: THIS CODE DEPENDS CN int BEING 4 BYTES LCN3! ! !

iifndef _MXWIN_H_

terror include 'stdafx.h' before including this file for PCH

#endif

#include "resource. h" // main symbols

//

//

// Carmen type definitions and static variables for the whole Grid-project

//

struct PANSATFilelnfo

{

CString Dir;

CString Ext;

CString Des;

};

74

www.manaraa.com

struct SUser

{

char login [20];

char passw[12];

int flags; // see Fxxx idefine's below

};

// declaration of the SMacro structure

struct SMacro // A Macro definition. Every oomand can be regarded as a macro.

{

public: // cor.struction/destruction

SMacroO;

SMacro (int nlndex) ; // use for construction of built-in ccmrands

SMacro (const char *pName) ; // use for construction of macros (disk-stored commands)

virtual ~SMacro () ; // frees all allocated memory

public: // public member functions

virtual int Load () ; // overload this macro with a new one

virtual int Save () ; // save the current macro to disk

virtual int Overwrite () ; // overwrite the current macro to disk

virtual int Execute () ; // execute the macro

virtual int GetError () ; // retrieve nError if load on construction is used

BOOL IsScriptO;

protected: // protected member functions and member variables

BOOL m_bHasChanged;

int nError; //internal error if Load, Save, Execute return FALSE; else amount of bytes read

private: // member functions unique to SMacro

const char *GetFileNarre () ; // use strcpytchar dest[256], pMacro-XSetFileName ()) ;

BOOL SetFileName (const char *pName)

;

const char *GetMacroNams ()

;

void SetMacroName (const char *pName);

private: // data members unique to SMacro

CString FileName;

CString MacroName;

CPtrArray cmd; // pointer to the macro CPtrArray structure containing SQid structures

BOOL m_bHasFileName;

BOX mjDlsBuiltln;

BOOL mjDlsScript;

// friend classes are . .

.

friend class CCHScriptsDlg;

};

#define NOERR -1

#define EBR_FTLE_NOT_FOUND

#define ERR_FTLE_EXISTS 1

#define EFRJLQRDING 2

#define EBR_SAVBJ3 3

tdefine EBR EXECUTIN3 4

75

www.manaraa.com

idefine ERR_CVEFWRITING 5

#define ERRNOFXLENBME 6

#define ERR_0PQJ_FCR_WRITIN3 7

#define EPR_0PEN_H€R_BEADIN3 8

#define EBR_C^EN_FCR_EXEDJITN3 9

#define EE»JJHII£JSTMNIN3_FII£SIZE 10

#defme ERR_DJVRLID_EXLEIKME 11

#define EFRJ3MM3ELETICN 12

const static char *ErrAry[] =

{

"File not found!", //0

"File already exists!", //I

"Error while leading necro from disk!"//2

"Error while saving macro to disk!", //3

"Error while executing macro!", //4

"Error while overwriting macro to disk!", //5

"No file name specified!", //6

"Couldn't cpen macro file for output!", 1/1

"Couldn't cpen macro file for input!", //8

"Couldn't cpen execution device!", //9

"Error while trying to obtain the macro file size!", //10

"This filename is invalid!", //ll

"Couldn't delete temporary file!" //12

};

struct SCmd : public S*tocro // SQtd holds carmand and data info for output to PflNSAT

{

public: // constructor/destructor

SCmd();

SCmd(int nlndex);

-SCrrdO;

public: // data members

int8 aid; // holds canmand ID according to DocCrtd[] .catmand

int!6 wParam; // holds param of type specified by TW_xxx in DocCmd[] .wParamJType

long lParam; // holds param of type specified by TL_xxx in DccQrd [] . lParamJIype

void *ptr; // holds a generic pointer according to TQ_xxx-spec in DocCrrdU .wParam_Type

public: // public member functions, overridden from SMacro

virtual BCQL Load (void *fh) ; // load a cenmand frcm disk

virtual BCQL Save (void *fh) ; // save stored cenmand to disk

virtual BOX Execute (void *fh) ; // execute this cenmand

protected: // protected member functions and member variables

virtual long GeneratePasswordO;

BCQL ReadString (void *fh, long *pLong, int *pnErr);

BCQL WriteString (void *fh, char *pchar, int *pnErr)

;

};

76

www.manaraa.com

struct SReturnQnd // SReturnQnd holds contend and data info for input from PANSAT

{

int8 cud; // holds corrrand ID according to DocQnd[] .carmand

int!6 size; // holds size of the whole data stream coming back or amount of received return structures

void *ptr; // holds a generic pointer or other info according to TR_xxx-spec in DocQtd[] .retum_Type

// SDocumuentQnd:

// The program command database. The source of information concerning ccmrand I/O with PANSAT.

struct SDocumentCmd // holds internal command representation

{

char *carmand; // plain ccmrand name

int8 ardID; // encoded corrmand ID

int flags; // Super User Corrmand, Password, user accessability

int wParam_Type; // defines type for SCmd.wParam

int lParamJType; // defines type for SCrrd.lParam

int retum_Type; // defines return type for SPetumCrrd.ptr

};

///

// pararreter structures: Sxxx. Send this stuff UP TO PANSAT! !

//

struct STask

{

char *diskname; // filename of THIS task on disk; not to be sent to PANSAT

char *taskname; // tasknarre in PANSAT

int8 pri; // task priority

int size;

void *data; // task data has size bytes

public:

STask (),

•

~STask(),

};

struct SCSParams

{

// tbd

public:

-SCSParams () ; // tbd

SCSParams (); // tbd

};

//

// return structures: SPoooc. CAUTICN: Length of structures must be determinable! !

!

//

struct SRFile // holds one PANSAT file

{

77

www.manaraa.com

char *name; // PANSAT file name has strlen(name) + 1 bytes

void *data; // file data has (SFetumQrd.size - strlen(name)+l) bytes

};

struct SRQndBuffer : SQtd // holds cne time tagged cetmrand (that is, ocnrrand and

{ // its parameters, planned begin of execution time)

long time; // SQLDATEITME4

};

struct SRTask // holds info for one task in PANSAT

{

char *name;

int8 on;

int!6 status;

int!6 pri;

intl6 size; // size in bytes of PANSAT task

struct SREvent : SFCmdBuffer // holds one event (that is, conrand and its parameters,

{ // begin of execution time)

};

struct SKTelemetry

{

// tbd

};

struct SBCSParams

rnt version;

long time;

int taskc;

char **taskv;

// SQLDATETIME4

// = n = # of entries taskv[n] . taskcKPaskCounter, taskv=TaskVector

// array of char * to tasknames

///

// flags for SDocumentOrd and SUser: CR 'em!

#define FNCFEQ 0x0000 // No requirements necessary

ttdefine FPASS 0x0001 // Passvrord required

#define FAEMTN 0x0002 // must be administrator to access super user and password ends

#define FSUPER 0x0004 // must be super user to access all Groundstation ends

tdefine FTOTFM 0x0008 // must be intermediate user to access all ends except memory and low-level

#define FDUMB 0x0010 // stupid user - can only access mail ends

#define FPCL 0x0020 // is a PCL ccrrmand (if not set: is a Groundstation use cemmand)

//

// Types of parameters: SKcxirientQTd.xx_Type identifier

78

www.manaraa.com

//

// TW_xxx and TL_xxx define data types appearing in wParam and lParam of the SCmd structure respectively.

// TW_xxx used for both output and return to/frem PANSAT, whereas TL_xxx is used only for output to PANSAT.

// TO_»c< are CR'ed to TW_xxx and define how the SCttd.ptr rneirber is to be interpreted. TQxxx are

// only used in the output structure SCmd.

// TR_xxx in contrary to TQ_xxx. are only used in the return structure SReturnCmd. They're also CR'ed to

// TW_xxx to define the SRetumCrrd.ptr generic pointer merrber.

#define TVOID 0x0000 // nothing specified

// wParam types: max#: 256, max range: 0x0000 .. OxFFFF

// Numbers

#define TWflyOMT 0x0001 // 0.. 65535 size of object

Idefine TW_DATA 0x0002 // 0. .OxFF memory contents

#define TW_CMD 0x0003 // 0..255 PANSAT catroand ID

#define TWJCDE 0x0004 // byte length; 0x00=BPSK, OxFF=SS

#define TWCTRL 0x0005 // byte; bin xxOOOOOO. .xxllllll (dec 63) transceiver control byte

#define TWJABLE 0x0006 // tbd; so far 0..255

#define TW_LEVEL 0x0007 // tbd; so far 0. .255

#define TW_PCWER 0x0008

#define TWVERSN 0x0009 // tbd; so far 0..255

#define TW_C00NT OxOOOA // 0. .200 amount of mem to be read fitting into one AX. 25 frame

// Type qualifiers: TQ_xxx (max#: 256) to be CR'ed with one of the TW_yyy types

// Defines the contents of the SCmd.ptr

#define TQ_CMDPTR 0x0100 // SCmd.ptr contains a pointer to an SCmd structure

#define TQ_ADDRESS 0x0200 // SCmd.ptr contains a pointer to n bytes (n: to be CR'ed with this)

#define TQTASKPTR 0x0300 // SCmd.ptr contains a pointer to an STaskList structure

#define TQC6PTR 0x0400 // SCmd.ptr contains a pointer to an SCSParams structure

#define TQ_CHPTR 0x0500 // SCmd.ptr contains a pointer to a C string C\0' -ended string)

#define TQ_MACRD 0x0600 // SCmd.ptr contains a pointer to an SMacro structure

// lParam types: roax#: 65536; max range: 0x00000000 .. OxFFFFFFFF

// char *, Addresses, Time

#define TL_CHPTR 0x0001 // pointer to a C string

#define TL_PCBADR 0x0002 // 0..0xFF PCB address

#define TL_RAMADR 0x0003 // 0..7FFFF (dec 524287) and F0000..FFFFF (dec 983040. .1048575) RAM/PCM address

#define TLjSRAMADR 0x0004 // 0..Ox3FFFFF (dec 4194303) SRAM address

#define TLJTLSHADR 0x0005 // 0..0x7FFFF (dec 524287) flash mem address

#define TL_PCRTADR 0x0006 // 0.. OxFFFF (dec 65535) CPU I/O port address

#define TLJJTC 0x0007 // 4 byte UTC time/date, equivalent to 4 Byte SQL time/date

// SReturnCmd return type qualifiers: TR_xxx (max#: 256) to be CR'ed with one of the TW_yyy types

// Defines the contents of the SReturnCmd.ptr generic pointer

#define TR_ADDRESS 0x0001 // address in groundstation computer memory

79

www.manaraa.com

#define TR UIC 0x0002 // SQLDATETBE4

#defxne TRJCHPTR 0x0003

#define TR_ETLEFTR 0x0004

#define TRJCMDPTR 0x0005

#define TRTASKFTR 0x0006

#define TR_EVEOTPTR 0x0007

#define TR_TELPTR 0x0009

#define TR OSPTR 0x0008

// pointer to C string

// pointer to struct SREile

// pointer to struct SRCmdBuffer

// pointer to struct SRTask

// pointer to struct SREvent

// pointer to struct SRTelemetry

// pointer to struct SRCSParams

const static SDocumentCmd DocCmd[]

{

{"add canrand" 0x01, FPCL | FSUPER] FPASS TVOID | TQJCMDPTR TLJJIC TVOID

{ "add_task" 0x02, FPCL | FSUPERI FPASS TQJIASKPTR TVOID TVOID

{"boot rem" 0x03, FPCL | FSUPER IFPASS TVOID TVOID TVOID

{"charge batt_a" 0x04, FPCL | FSUPERI FPASS TVOID TVOID TVOID

{ "charge_batt_b" 0x05, FPCL | FSUPERI FPASS TVOID TVOID TVOID

{"delete cormend" 0x06, FPCLI FSUPERI FPASS TWJCMD TLJJIC TVOID

{"delete file" , 0x07, FPCLIFNCREQ TVOID TLJCHPTR TVOID

{"delete task" , 0x08, FPCL | FSUPERI FPASS TVOID TL_CHPTR TVOID

{ "directory" 0x09, FPCLIFNCREQ TVOID TVOID TW_AMCUNT| TR CHPTR },

{"discharge batt_a" OxOA, FPCL [FSUPERI FPASS TVOID TVOID TVOID

{"discharge batt_b" OxOB, FPCL | FSUPERI FPASS TVOID TVOID TVOID

{"drop users" OxOC, FPCL
|
FSUPER | FPASS TVOID TVOID TVOID

{"get file" , OxOD, FPCLIFNCREQ TVOID TL CHPTR TR_FILEPTR },

{"io read" , OxOE, FPCLIFNCREQ TVOID TL PCRTADR TW_DATA | TR_ADDRESS },

{"10 write" OxOF, FPCL | FSUPERI FPASS TW_DATA TL_PCRTADR TVOID

{"list corrmand buffer" 0x10, FPCL | FSUPERI FPASS TVOID TVOID TW_AMDUNT| TR OMDPTR },

{"list tasks" , 0x11, FPCL | FSUPER | FPASS TVOID TVOID TW_AMCUNT| TRJIASKPTR },

{"lockout users" , 0x12, FPCL I FSUPER I FPASS TVOID TVOID TVOID

{ "pebr" , 0x13, FPCLIFNCREQ TVOID TL PCBADR TW_DATA | TR_ADDRESS),

{ "pebw" , 0x14, FPCL | FSUPER I FPASS TW_DATA TL_PCBADR TVOID

{"purge command buffer" 0x15, FPCL | FSUPERI FPASS TVOID TVOID TVOID

{"purge event log" 0x16, FPCL | FSUPERI FPASS TVOID TVOID TVOID

{"purge flashjdata" 0x17, FPCL | FSUPERI FPASS TVOID TVOID TVOID

{"purge stored telemetry" 0x18, FPCL | FSUPERI FPASS TVOID TVOID TVOID

{"put file" 0x19, FPCLIFNCREQ TW_AMCUNT| TQ_ADDRESS TLJCHPTR TVOID

{"read clock" OxlA, FPCLIFNCREQ TVOID TVOID TRJJIC },

{"read event log" OxlB, FPCL | FSUPER | FPASS TVOID TVOID TW_AM3UNT| TR EVEOTPTR},

{"read flash data" OxlC, FPCLIFNCREQ TVOID TVOID TRJIELPTR },

{"read flash mem" OxlD, FPCLIFNCREQ TW AMCUNT TL_FLSHADR , TW_AMDUNT| TRADDRESS },

{"read os_param" OxlE, FPCLIFNCREQ TVOID , TVOID TR CSPTR },

{"read recent telemetry" OxlF, FPCLIFNCREQ TVOID , TVOID TRJIELPTR },

{ "read sram mem" 0x20, FPCLIFNCREQ TW_AMCUNT , TL SPAMADR , TWJMXNT\ TR_ADDRESS },

{"read stored telemetry" 0x21, FPCLIFNCREQ TVOID , TVOID , TR TELPTR },

{"reset watchdog" 0x22, FPCLIFNCREQ , TVOID T\OID TVOID

{"sel trans_param" , 0x23, FPCLIFNCREQ , TWCIRL TVOID TVOID

80

www.manaraa.com

{ "select_Mnit_mode" , 0x24,

{"set_clock" , 0x25,

{ "setjpol 1 1 ng_rates" , 0x26,

{"set_power_level" , 0x27,

{ "setjpwr_switch" , 0x28,

{"set_storage_rates" , 0x29,

{ "start_task" , 0x2A,

{"stop_task" , 0x2B,

{"stcp_wdog" , 0x2C,

{ "unlock_users" , 0x2D,

{ "update_os_paiam" , 0x2E,

{ "write_fLash_man" , 0x2F,

{ "write sram man" , 0x30,

FPCL|FSUPER| FPASS, TWJCDE

FPCL|FSUPER| FPASS, TVOID

FPCL|FSUPER| FPASS, TOJEABLE

FPCLIESUPERIFPASS, TO_LEVEL

FPCL
| tSUPER | FPASS, TO_P0WER

FPCLI FSUPERI FPASS, TOJEABLE

FPCLIESUPERIFPASS, TVOID

FPCLIESUPERIFPASS, TVOID

FPCLIESUPERIFPASS, TVOID

FPCLIESUPERIFPASS, TVOID

FPCLI FSUPERI FPASS,

FPCLI FNCREQ , TW_DATA

FPCLIESUPERIFPASS, TO DATA

, TVOID TVOID

, TLJJIC TVOID

, TVOID TVOID

, TVOID , TVOID

, TVOID , TVOID

, TVOID , TVOID

, TL_CHPTR , TVOID

, TL_CHPTR , TVOID

, TVOID , TVOID

, TVOID , TVOID

TQCSPTR , TVOID , TVOID

, TLFLSHADR, TVOID

, TL SRAMADR, TVOID

{ "readjremory"

{ "write memory"

0x31, FPCLI

0x32, FPCLI FNOREQ

, TOJAMCUNT , TLJRAMADR , TO_AMCUNT
|
TR_ADDRESS

, TO AMXINTI TQ ADDRESS, TL RAMADR , TVOID

*/

};

const static int nAmountCmd = sizeof (DocCmd)/sizeof (SDccumentCmd)

;

// the following idefine's allow symbolic access to all contends via their 0-based index entry into

// the main CPtrArray named cmds. DCKT MESS WITH THESE DEFINES!

// THEiT REPRESENT THE INDEX IN DocCmd[] AND ARE LATER STORED INTO CPtrArray Macro!

#define CMD_add_canrand 0x00

idefine CMD_add_task 0x01

define CMD_bcot_rcm 0x02

#define CMD_charge_batt_a 0x03

#define CMD_charge_batt_b 0x04

#define CMD_delete_catmand 0x05

#define CMD_delete_file 0x06

#define CMD_delete_task 0x07

#define CNDjdirectory 0x08

#define CMD_discharge_batt_a 0x09

#define CMD_discharge_batt_b OxOA

#define CMD_drcp_users OxOB

Idefine CMD_get_file OxOC

idefine CMD_io_read OxOD

idefine CMD_io_write OxOE

idefine C^_listjcamBnd_buffer OxOF

idefine CMD_list_tasks 0x10

idefine CMD_lcckout_users 0x11

idefine CMD_pcbr 0x12

idefine CMD_pcbw 0x13

idefine CMDjxirgejconmand_buffer 0x14

idefine CMD_pjrge_event_log 0x15

81

www.manaraa.com

#define CMDjpurge flash data 0x16

#define CMDjpurge stored telemetry ' 0x17

#define CMD_put_file 0x18

#define CMD read clock 0x19

#define CMD read event log OxlA

#define CMD_read_flash_data OxlB

idefine CMD_read_fl ashjran OxlC

#define CMD read os_param OxlD

#define CMD read recent telemetry OxlE

#define CMD read sram mem OxlF

idefine CMD read stored telemetry 0x20

idefine CMD reset watchdog 0x21

#define CMD_sel_trans_param 0x22

idefine CMD select xmit mode 0x23

idefine CMD set clock 0x24

idefine CMD setjpol 1 i ng rates 0x25

idefine CMD setjpower level 0x26

idefine CMD set_pwr switch 0x27

idefine CMD_set_storage_rates 0x28

idefine CMD_start_task 0x29

idefine CMD_stcp_task 0x2A

idefine CMD stop wdog 0x2B

idefine CMD unlock users 0x2C

idefine CMD update os_param 0x2D

idefine CMD write flash mem 0x2E

idefine CMD write sram mem

/*

idefine CMD read memory

0x2F

0x30

idefine CMD write memory

V
idefine CMD_NEXr_VKLUE

0x31

0x30 // keep this one always the next free index

idefine CMD macroOl CMDJEXT_V7AL0E

idefine CMD_nacro02 CM3JEXT_VALUE+1

idefine CMD macro03 CMDJEXTVMXE+2

idefine CMD_macro04 CMDJEXTVALOE+3

idefine CMD_nacro05 CM)JEXTJffiUE+4

idefine CMD macro06 CMDJE<T_VftLUE+5

idefine CMD macro07 CM3JJEXTJMXE+6

idefine CMD_roacro08 CM3_NEXT_V?JJUE+7

idefine CMD_macro09 CMDJ»CT_VALUE+8

idefine CMD macrolO ayDJEXT_V7AL0E+9

idefine CMD macroll CMD_NEXT_VALUE+10

idefine CMD_macrol2 CMDJB<T_VALUE+11

idefine CMD macrol3 CMD_NEXT_VALuE+12

idefine CMD macrol4 CMDJ^EXTVALUE+13

idefine CMD macrol5 CMD NEXT V7ALUE+14

82

www.manaraa.com

struct STypeRange

{

int typelD;

int vartype;

long low;

long high;

long xlow;

long xhigh;

// type ID (TW_xxx and TL_xxx, see above #define's)

// variable type (Vxxx, see #define's below)

// valid range for specified typelD:

// - if vartype=VtCMBER, V7ADDRESS: low, high : lowest/highest nurrber,

// xlow, xhigh: except, but not including, that range

// - if vartype=VSTRINS: low: max string length (including \0)

// - if vartype=vnME: no built-in restrictions

};

// variable types: STypeRange.vartype

#define VTJCMBER 0x01

tdefine VTADDRESS 0x02

#defme VT_STRIN3 0x03

#define VTJTME 0x04

const static STypeRange TypeRange[] =

{

{ IWMOUNT , VTJCMBER , 0, OxFFFF, 0, },

{ TWJDKTA , VTJCMBER , 0, OxFF , 0, },

_ { TW_CMD , VTJCMBER , 0, OxFF , 0, },

{ TWJCDE , VTJCMBER , 0, OxFF , 0, OxFF},

{ TWCTRL , VTJCMBER , 0, 0x3F , 0, },

(TWJCABLE , VTJCMBER , 0, OxFF , 0, },

{ TWLEVEL , VTJCMBER , 0, OxFF , 0, },

{ TW_PCWER , VTJCMBER , 0, OxFF , 0, },

{ TWVERSN , VTJCMBER , 0, OxFF , 0, },

{ TW COUNT , VT NUMBER , 0, 0xC8 , 0, },

{ TL_CHPTR , VT_ADDRESS, 0,

{ TLJCBADR , VTADDRESS, 0, OxFF

{ TLRAMADR , VTJJXRESS, 0, OxFFFFF

{ TLJ3RAMADR, VT_ADDR£SS, 0, 0x3FFFFF,

{ TLJLSHADR, VTJADDRESS, 0, 0x7FFFF

{ TLJCKTRDR, VTJADDRESS, 0, OxFFFF

{ TLUTC , VT TIME , 0,

,

,

0x7FFFF, OxFOOOO

,

,

,

,

// default sections in the Gnd.INI file:

const static char *def [] = {"Script", "Macro", "Telemetry", "Userlog", "Task", "In"

const static int lyRXDIRS = sizeof (def) /sizeof (char *);

define IX_SCRIPr

#defxne rx_MACRO 1

#define KJTELEMETRY 2

#define IX USERU3G 3

"Out"};

www.manaraa.com

#define KTASK - 4

#define JXJN 5

#defme IX OUT 6

// edit IDs in Preferenoes-Dialog (see GO. PC)

:

ocmst static int prefID[] = { IDCJDITl, IDC_EDIT2, IDC_EDIT3, IDC_EDIT4,

ICC_EDIT5, IDC_EDrT6, IDC_EDIT7 };

///

// OGndApp:

// See Gnd.cpp for the implementation of this class

//

class OGndApp : public CWinApp

{

public:

OGndAppO;

// Overrides

// ClassWizard generated virtual function overrides

// { {AEXJOTTUAL (OGndApp)

public:

virtual BCOL Initlnstance () ;

//} }AEX_VTKnjaL

// Inplementation

// { {AEXMSG (OGndApp)

afxjnsg void CnAppAbout () ;

// NOTE - the ClassWizard will add and remove member functions here.

// DO NOT EDIT what you see in these blocks of generated code !

//}}AFX_MSG

DECLARE MESSAGE MAPO

Gnd.cpp

// Gnd.cpp : Defines the class behaviors for the application.

//

tinclude "stdafx.h"

#include "Gnd.h"

#include "mainfrm.h"

tinclude "Gnddoc.h"

#include "mytabdlg.h"

#include "Gndview.h"

84

www.manaraa.com

#ifdef _DEBU3

#undef THIS_FTLE:

static char BASEDCODE THIS_FILE[] = _FTLE_;

#endif

///

// OGndSpp

BEGIN_MESSAGEjyRP (CGndApp, CWinApp)

// { {AEX_MSG_MAP (CGndSpp)

CNJXMyFJCi(ID_APP_ABCUr, CnAppAbout)

// NOTE - the ClassWizard will add and remove mapping macros here.

// DO NOT EDIT what you see in these blocks of generated cede!

//}}AFXJYSG_MAP

// Standard file based document carrrands

CNJXKMANDf^FTLEJEW, CWinApp: :OnFileNew)

CN_CCMyiAND(ID_FTLE_OPEN / CWinApp: :GnFileOpen)

// Standard print setup command

CNjDCiyMAND(ID_FIIE_PRrM'_SETUP, CWinSpp: :OnFilePrmtSetup)

END_MESSAGE_MAP()

///

// CGndflpp construction

CGndApp : :CGndApp (

)

{

m_pszAppName="PANSAT Ground Station";

m_pszProfileName=''Gnd . INI "

;

}

///

// The one and only CGndApp object

CGndApp theApp;

///

// CGndApp initialization

EOOL CGndApp: : Initlnstance (

)

{

// Standard initialization

//If you are not using these features and wish to reduce the size

// of your final executable, you should remove frcm the following

// the specific initialization routines you do not need.

Enable3dOcntrols ()

;

85

www.manaraa.com

LcadStdProfileSettings () ; // Load standard INI file options (including MRU)

WidgetsInitO;

//XTablelnitO;

// Register the application's document templates. Document templates

// serve as the connection between documents, frame windows and views.

CSingleDocTemplate* pDocTemplate;

pDocTemplate = new CSingleDocTemplate

(

IDR_MAIMEAME,

RUOTTMEJCLASS (CGndDoc)

,

RUNniyE_CIASS(CNainFrame), // main SDI frame window

RUNnME_CLASS (CGndView)) ;

AddDocTemplate (pDocTemplate)

;

// create a new (empty) document

CnfileNewO;

if (m_lpQrdLine[0] != '\0')

{

// T0D3: add ccnrrand line processing here

>

return TRUE;

}

///

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

public:

CAboutDlg
() ;

// Dialog Data

//({AJXJDATA (CAboutDlg)

enum { IDD = irD_AECOTBCK } ;

//})AEX_DATA

// Implementation

protected:

virtual void DoDataExchange (CDataExchange* pDX) ; // DDX/DDV support

// { {APX_MSG (CAboutDlg)

// No message handlers

//} (APXJXEG

DEX2ARE_MESSAGE_MAP (

)

};

86

www.manaraa.com

CAboutDlg : : CAboutDlg () : CDialog (CAboutDlg : : IDD)

{

//{ {AEXJDATAJNIT (CAboutDlg)

//}}AE<_nAIR_INIT

}

void CSboutDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog: :DoDataExchange (pDX)

;

// ((AFXJ3ATA_MAP (CAboutDlg)

//) }AFX_DAIA_MAP

}

BEEIN_MESSAGE_MAP (CAboutDlg, CDialog)

//({AEX_MSG_MAP (CAboutDlg)

// No message handlers

//} }AE<_MSG_MAP

QC)_MESSAG£_MAP (

)

// App caxmand to run the dialog

void CGhdApp: :CnAppAbout (

)

{

CAboutDlg aboutDlg;

aboutDlg.DcModal () ;

}

///

// CGndApp contends

GndDoc.h

// Qnddoc.h : interface of the CQrdDoc class

//

///

class CGhdDoc : public CDocuraent

{

protected: // create from serialization only

CQrdDoc 0;

DBC1ARE_DYNCFEATE (CGndDoc

)

// Attributes

public:

SMacro *pMacro;

CPtrArray c; // heme of all built-in cemmands

87

www.manaraa.com

CPtrArray rtu // heme of all loaded macros

// Operations

public:

// Overrides

// ClassWizard generated virtual function overrides

// { {AEXVIKTUAL (CGndCcc)

public:

virtual BCOL CnNewDocument ()

;

//HAfXVTKTUAL

// Irrplementation

public:

virtual ~CGndDoc();

virtual void Serialize (CArchives ar) ; // overridden for document i/o

#ifdef _DEBUG

virtual void AssertValid () const;

virtual void Dump (CDumpContext& dc) const;

#endif

protected:

// Generated message map functions

protected:

//{ {AFXjyEG(CGndDcc)

// NOTE - the ClassWizard will add and remove member functions here.

// DO NOT EDIT what you see in these blocks of generated code !

//} JAEXJEG

IE3ARE_MESSSGE_MAP (

)

};

///

GndDoc.cpp

// aiddcc.cpp : implementation of the CGxEoc class

//

#include "stdafx.h"

iinclude "fcntl.h"

#include "sys/stat.h"

#include "Ghd.h"

iinclude "QTddoc.h"

#ifdef DEBUG

88

www.manaraa.com

#undef THIS_FTLE

static char BftSEDJXCE THIS_FILE[] = FII£__;

#endif

///

// CGndDoc

IMPLEME3srr_DYICREATE (CGndDoc, CDocument)

BB3INMESSAGEjyiAP(CQTdDoc, CEocument)

//{ {AEX_MSG_MAP(OQndDDC)

// NOTE - the ClassWizard will add and rerrove mapping macros here.

// DO NOT EDIT what you see in these blocks of generated code!

//}}AEX_MSGJVRP

END_MESSAGE_MAP (

)

///

// CGhdDoc construction/destruction

CGndDoc: :CGndDoc

{

//pMacro = new SMacro("D:\\ich\\hier\\kaum\\daten.PCL");

}

CGndDoc : : -CGndDoc (

)

{

// delete pMacro;

}

ECQL CGndDoc: :OnNewCccumsnt ()

{

if (! CDocument : :CnNewDocumentO)

return EALSE;

// TCCO: add reinitialization code here

// (SDI documents will reuse this document)

return TFUE;

}

///

// CGndDoc serialization

void CGndDoc: : Serialize (CArchive& ar)

{

if (ar.IsStoringO)

{

89

www.manaraa.com

// TCDO: add storing code here

}

else

{

// TCDO: add leading code here

}

///

// CQxIDoc diagnostics

iifdef _E£BUS

void CGhdDoc: :AssertValid() const

{

CDocurrent : :AssertValid () ;

}

void CQxDcc::Durip(CIXiripCantext& dc) const

{

CDocurrent: :Djrrp(dc) ;

}

#endif //_DEBOG

//////////////////////////////////

// SCrrri irrplerrentation

//

SCmd::SCmd()

{

cmd = 0;

wParam = 0;

lParam = 0;

ptr = (void *)0;

}

SCmd::SQrd(int nlndex)

{

and = nlndex;

wParam = 0;

lParam = 0;

ptr = (void *)0;

}

SQrd: : -SCrrri ()

{

int n;

for (n=0; n<nftmountCmd, DocCrrri[n] .crrdID!=ard; n++)

;

90

www.manaraa.com

switch (DocQtd[n] .wParamType & OxFFOO)

{

case TQJDMDPTR : if ((SCmd *)ptr) delete (SCmd *)ptr; break;

case TQTASKPTR: if ((STask *)ptr) delete (STask *)ptr; break;

case TQjOSPTR : if ((SCSParams *)ptr) delete (SCSParams *)ptr; break;

}

switch (DocQrd[n] .lParamType)

{

case TL_CHPTR : if ((SQid *)lParam) delete (SCmd *)lParam; break;

}

}

BOOL SCmd: :ReadString(void *fh, long *pLong, int *pnErr)

{

BOOL err;

char c;

CString str = "";

for (; err = ReadFile(fh, &c, 1, (LPDWOPD)pnErr, NULL), *pnErr!=0, c! = '\0'; str += c) ;

if (!
(*pnErr)

I
| err) return FftLSE; // unexpected eof

else

{

str »«= '\0';

*pLong = (long) (new char [str. GetLength 0+1]);

strcpy((char *) (*pLong), LPCTSTR(str));

return TRUE;

}

}

BCOL SQnd: :Load(void *fh) // load canrands as they were' saved (see SCmd: :Save) : only camands

{ // without password and referenced files (normally from disk)

int n, wType, gType, lType;

int th; // tenp handle for add_task, put_file ccnrtBnds

DWORD tlen; // tenp file length

if (ReadFile(fh, &cmd, 1, (LPDWORD) SnError, NULL) && nError=0) return TRUE; // eof

for (n=0; n<r*mountGmd, DocGmd[n] . cradID ! =atri; n++);

WType = DocCmd[n] .wParamType & OxOOFF;

gType = DocOirl[n] .wParamJType & OxFFOO;

lType = DocCmd[n] .lParam_Type;

switch (wType)

{

case TVOID : switch (lType)

{

case TL PCRTADR:

91

www.manaraa.com

FILE SHARE READ,

case TL_PCBADR

case TL_FLSHADR

case TL_SRAMADR

case TLUIC

case TL CHPTR

if (!ReadFile(fh, &lParam, 4, (LPDWCRD) SnError, NULL)) return FALSE;

if (!ReadStxing(fh, ilParam, inError)) return FALSE;

else break; // go on with (a)

}

switch (gType) // (a)

:

{

case TQ_CMDETR : ptr = new SQtd;

if (!(((SQiri *) (ptr))->Load(fh))) return FALSE; else break;

case TQJEASKPTR: ptr = new STask;

if (!ReadString(fh, (lcng*)(&((STask *) (ptr))->taskname) , &nError)

)

return FALSE;

if (!ReadString(fh, (long *) (&((STask *) (ptr)) -Xiisknane) , SnError)

)

return FALSE;

if (!ReadFile(fh, &((STask *) (ptr))->pri, 1, (LPCWCRD) &nError, NULL))

return FALSE;

if (th = CreateFile(((STask *) (ptr)) ->disknane, G£NERIC_READ,

NULL, OPEN_EXISTTNG, FII£_FIAG_SECCMrriAL_SCAN, NULL)

= INVAUDJffiNDlEVALUE) return FALSE;

else

{

if (tlen = GetFileSize ((void

tlen > OxFFFF)

)th, NULL) = INVALID FILE SI2E
| |

{

CloseHandle ((void

return FALSE;

}

else

(

)th);

case TQ CSPTR

((STask *) (ptr))->size = tlen;

((STask *) (ptr))->data = new char [tlen]

;

if (!ReadFile((void *)th, &((STask *) (ptr))->data, tlen,

(LPDWCRD) SnError, NULL)) return FALSE;

CloseHandle ((void *) th)

;

}

}

break; // go on with (b)

break; // tbd

}

break; // (b) : go on with (z)

case TW_CMD : if (!PeadFile(fh, &wParam, 1, (LPDtCRD) inError, NULL)) return FALSE;

switch (lType)

{

92

www.manaraa.com

case TLJJIC : if (!ReadFile(fh, &lParam, 4, (LPDWCRD) &nError, NULL)) return FALSE;

else break; // go on with (c)

}

break; // (c) : go on with (z)

case TW_DA1A : switch (lType)

{

case TL_PCKIADR

case TL_PCBADR

case TLJLSHADR

case TLjSRSMADR: if (!ReadFlle(fh, SlParam, 4, (LPDWORD) &nError, NULL)) return FALSE;

if (!ReadFile{fh, SwParam, 1, (LPCWCRD) SnError, NULL)) return FALSE;

else break; // go on with (d)

}

break; // (d) : go on with (z)

case TW_AM3UNT: switch (lType)

{

case TL_FLSHAER:

case TL_SFPMAER:

case TL_RAMACR : if (!ReadFile(fh, SlParam, 4, (LPDWCRD) SnError, NULL)) return FALSE;

if (!ReadFile(fh, &wParam, 2, (LPDWGRD) &nError, NULL)) return FALSE;

else break; // go on with (e)

case TL_CHPTR : if (gType=<rQ_ACDRESS) // load file to mem (i.e. put_file)

{

if (!ReadString(fh, &lParam, snError)) return FALSE;

if (th = CreateFile ((char *)lParam, C2NERIC_RERD, FXLE_SHARE_READ, NULL,

OPENJEXISTING, FXI£_FXAG_SEX2UFOTIAL_SCAN, NULL)

= INWilDJfflNDLEJ^LUE) return FALSE;

else

{

if (tlen = GetFileSize ((void *)th, NULL) = LNVALID_FTLE_SIZE
| |

tlen > OxFFFF)

{

CloseHandle ((void *) th)

;

return FALSE;

}

else

{

wParam = (intlb) tlen;

ptr = new char [tlen];

if (!ReadFile((void *)th, ptr, tlen, (LPDW3RD) &nError, NULL)) return

FALSE;

CloseHandle ((void *) th)

;

}

93

www.manaraa.com

case TWCTKL

case TWJCDE

case TW_TABLE

case TWLEVEL

case TW PCWER

break; // go on with (e)

}

break; // (e) : go on with (z)

if (!ReadFile(fh, &wParam, 1, (LPDWCRD) &nError, NULL)) return FALSE;

retum TRUE; // (z)

BCOL SCfcri::WriteString(void *fh, char *pchar, int *pnErr)

{

char *p;

if (Ipchar) return FALSE;

for (p=pchar; WriteFile(fh, p, 1, (LPCtCBD)pnErr, NULL); p++)

if (*p='\0') return TRUE;

return FALSE;

BOX SQrd: : Save (void *fh) // put out cantHnds without password and without referenced files (normally to disk)

{

int n, wType, qType, lType;

if (!WriteKJ.e(fh, &cmd, 1, (LPDWCBD) &nError, NULL)) return FKLSE;

for (n=0; n<nSrrDuntQrd, DocQrdfn] .aidID!=cmd; n++);

wType = DocOndfn] .wParamJType & OxOOFF;

qType = DocQnd[n] .wParam_Type & OxFFOO;

lType = DccCmd[n] .lParamType;

switch (wType)

{

case TVOID : switch (lType)

{

case TL_PCKERDR

case TL_PCBAER

case TL_FLSHADR

case TL_SEflMADR

case TLJJTC

case TL CHPTR

if (!WriteFile(fh, SlParam, 4, (LPDHCM)) SnError, NULL)) return FALSE;

if (!WriteString(fh, (char *)&lParam, snError)) return FALSE;

else break; // go on with (a)

}

switch (qType) // (a)

:

{

94

www.manaraa.com

case TQ_CMDPTR : if (! (((SQnd +) (ptr))->Save(fh))) return FALSE; else break;

case TQJIASKPTR: if (!WriteString(fh, (char*)(&((STask *) (ptr))->tasknarre) , &nError)

)

return FALSE;

if (!WnteString(fh, (char*)(&((STask *) (ptr))-x±Lskname), &nError)

)

return FALSE;

if (!WriteFile(fh, &((STask *) (ptr))->pri, 1, (LPD6CRD) &nError, NULL))

return FALSE;

break; // go on with (b)

case TQOSPTR : break; // tbd

>

break; // (b) : go on with (z)

case TW_CMD : if (!WriteFile(fh, &wParam, 1, (LPDWCRD) &nError, NULL)) return FALSE;

switch (lType)

(

case TL_UTC : if (!WriteFile(fh, ilParam, 4, (LPEWCR3) &nError, NULL)) return FALSE;

else break; // go on with (c)

)

break; // (c) : go on with (z)

case TW EftTA : switch (lType)

{

case TL_PCKIADR

case TL_PCBADR

case TL_FLSHADR

case TL SRAMAER if (!WriteFile(fh, SlParam, 4, (LPCWCPD) SnError, NULL)) return FALSE;

if (!WriteFile(fh, SwParam, 1, (LPDWCRD) SnError, NULL)) return FALSE;

else break; // go on with (d)

)

break; // (d) : go on with (z)

case TW_AMDUNT: switch (lType)

I

case TL_FLSHADR:

case TL_SRBM&DR:

case TLJRAMADR : if (!WriteFile(fh, SlParam, 4, (LPCWGRD) SnError, NULL)) return FALSE;

if (!WriteFile(fh, &wParam, 2, (LPDWCRD) &nError, NULL)) return FALSE;

else break; // go on with (e)

case TL_CHPTR : if (gType=^TO_ADDRESS)

if (!WriteString(fh, (char *)&lParam, &nError)) return FALSE;

break; // go on with (e)

}

break; // (e) : go on with (z)

case TW_CTRL

case TW_MXE

case TW_TARTF,

case TW LEVEL

95

www.manaraa.com

case TO PCWER : if (!WriteFile(fh, &wParam, 1, (LPDWCBD) SnError, NULL)) return FALSE;

return TRUE; // (z)

:

BCOL SCmd: : Execute (void *fh) // put out ccnmands, their password and referenced files (normally to CXKL)

{

int n, wType, qjype, lType;

int th; // teirp handle for add_task, put_file camands

DWORD tlen; // temp file length

long lPassWord;

if (!WriteFile(fh, &cmd, 1, (LPDWCBD) &nError, NULL)) return FALSE;

for (n=0; n<nSmountQrd, DocGnd[n] .ardID!=arri; n++)

;

if (DocQirl[n]. flags & FPASS)

{

lPassWord = GeneratePassword ()

;

if (!WriteFile(fh, SlPassWord, 4, (LPDWCBD) &nError, NULL)) return FALSE;

}

wType = DocQtd[n] .wParam_Type & OxOOFF;

qType = DocOtri[n] .wParam_Type & OxFFOO;

lType = DocQnd[n] .lParatnType;

switch (wType)

{

case TVOID

FILE SHARE READ,

switch (lType)

{

case TL_POKTADR:

case TL_PCBADR :

case TL_FLSHADR:

case TL_SRAMADR:

case TL_UTC : if (!WriteFile(fh, ilParam, 4, (LPDWCBD) SnError, NULL)) return FALSE;

case TL_CHPTR : if (!WriteString(fh, (char *)&lParam, SnError)) return FALSE;

else break; // go on with (a)

}

switch (gjype) // (a)

:

{

case TQ_CMDPTR : if (! (((SCmd *) (ptr))->Execute(fh))) return FALSE; else break;

case TQJTASKPTR: if (!WriteString(fh, ((STask *) (ptr)) ->tasknarte, SnError)) return FALSE;

if (!WriteFile(fh, &((STask *) (ptr))->pri, 1, (LPDWCBD) SnError, NULL))

return FALSE;

if (th = CreateFile(((STask *) (ptr)) -xiiskname, ffiNERIC_READ,

NULL, OPENJXISTTNG, FII£_FIiC_SECJUENnAL_SC7W, NULL)

= INVALID HANDLE VALUE) return FALSE;

96

www.manaraa.com

(LPEWCRD) &nError,

else

{

if (tlen = GetFileSize ((void *)th, NULL) = BWALID_FTLE_SIZE
| |

tlen > OxFFFF)

{

CloseHandle ((void *)th);

return FALSE;

}

else

{

((STask *) (ptr))->size = tlen;

((STask *) (ptr))->data = new char [tlen];

if (!ReadFile((void *)th, &((STask *) (ptr))->data, tlen,

NULL)) return FALSE;

CloseHandle ((void *)th);

}

}

if (!WriteFile(fh, &((STask *) (ptr))->size, 2, (LPCW3RD) SnError, NULL))

return FALSE;

if (!WriteFile(fh, &((STask *) (ptr))->data, tlen, (LPLTCRD) &nError, NULL))

return FALSE;

break; // go on with (b)

case TQ_CSFTR : break; // tbd

}

break; // (b) : go on with (z)

case TW_CMD : if (!WriteFile(fh, &wParam, 1, (LPDWCPiD) &nError, NULL)) return FALSE;

switch (lType)

{

case TL_UTC : if (!WriteFile(fh, SclParam, 4, (LPDWCRD) SnError, NULL)) return FALSE;

else break; // go on with (c)

}

break; // (c) : go on with (z)

case TW_DATA : switch (lType)

{

case TL_PCRTAER

case TL_PCBADR

case TL_FLSHADR

case TL_SRAMADR: if (!WriteFile(fh, SlParam, 4, (LPDWCRD) &nError, NULL)) return FALSE;

if (!WriteFile(fh, &wParam, 1, (LPDWORD) SnError, NULL)) return FALSE;

else break; // go on with (d)

}

break; // (d) : go on with (z)

case TO AMOUNT: switch (lType)

07

www.manaraa.com

case TLJEISHADR:

case TL_SRSMADR:

case TL_R£MADR : if (!WriteFlle(fh, &lParam, 4, (LPDWCRD) &nError, NULL)) return EALSE;

if (!WnteFile(fh, &wParam, 2, (LPDWCRD) &nError, NULL)) return EALSE;

else break; // go en with (e)

case TL_CHPTR : if (gType=^TQ_ADDRESS) // load file to mem (i.e. put_file)

{

if (!WriteString(fh, (char *)&lParam, SnError)) return EXLSE;

if (th = CreateElle ((char *)lParam, GENERIC_READ, FILE_SHARE_READ, NULL,

OPENJXISTTNG, Fn£_EI^_SEQUENTIAL_SCaN, NULL)

= INVRLJ:D_HRNDLE_V7\LUE) return FRLSE;

else

{

if (tlen = GetFileSize((void *)th, NULL) = LNVAUD_FILE_SIZE
| I

tlen > OxFFFF)

{

CloseHandle ((void *) th)

;

return E7\LSE;

}

else

{

wParam = (int!6) tlen;

ptr = new char [tlen];

if (!ReadFile((void *)th, ptr, tlen, (IPDWCRD) toError, NULL):

return EALSE;

CloseHandle ((void *) th)

;

}

if (!WriteEile(fh, &((STask *) (ptr))->size, 2, (LPDWCRD) toError, NULL))

return EALSE;

if (!WriteFile(fh, &((STask *) (ptr))->data, tlen, (LPDWCRD) &nError, NULL))

return EALSE;

break; // go on with (e)

}

break; // (e) : go on with (z)

case W_CTRL

case TWMXE

case TO_TART.F,

case TWLEVEL

case TO POWER if (!WriteFile(fh, &wParam, 1, (LPDWCRD) &nError, NULL)) return EALSE;

)

return TRUE; // (z)

long SCmd: :GeneratePassword()

98

www.manaraa.com

{

return OxABCD;

///

// SMacro implementation

SMacro: :SMacro()

(

nError = NCERR;

m_bHasFileName = FALSE;

mJaHasChanged = FALSE;

m_bIsBuiltIn = TRUE;

m_bIsScript = TRUE;

FileName = "";

MacroName = "";

}

SMacro: :SMacro(int nlndex)

{

nError = NCERR;

m_bHasFileName = EALSE;

m_bHasChanged = FALSE;

m_bIsBuiltIn = TRUE;

rnblsScript = TRUE;

FileName = "";

MacroName = DccCmd [nlndex] .contend;

ard.Add(new SCtrd (nlndex)) ; // call constructor of SCmd

}

SMacro: :SMacro(const char *pName)

{

int ixl, ixr, d;

nError = NCERR;

m_bHasFileName = TRUE;

rnbHasChanged = FALSE;

m_bIsBuiltln = EALSE;

FileName = pNarre;

ixr = FileName. ReverseFind('

.

')

;

ixl = FileName. ReverseFind('

:

')+l;

if ((d=FileName.ReverseFind('\\')+l) > ixl) ixl = d;

if (ixr=-l) MacroName = FileName.Mid (ixl)

;

else MacroName = FileName.Mid (ixl, ixr-ixl);

nError = Load ()

;

99

www.manaraa.com

SMacro: : -SMacro (

)

{

int i, imax;

SQtri *pQtid;

for (i=0, itrBx=atid.GetUpperBound() ; i<=ima>:; i++)

{

pQiri = (SQtri *) cirri.GetAt Un-

delete pQtd;

}

}

int SMacro: :Load()

{

int fh;

DWORD flen;

SQtri *pQtri;

if (LPCTSTR(FlleNane)=='"*)

return EE^R_NO_ETLENSME;

if (fh = CreateFile(LPCrSTR(EileNaiTE), GENEK[C_READ, ETLE_SHAFE_BEAD, NULL,

OPENJXISTING, ETI£_FIAG_SECUENriAL_SCfiN, NULL)

= INVAIi[D_HfiNDLE_VaLUE)

{

switch (GetLastError ()

)

{

case ERRCR_ETI£_NOT_roUND : return EH^_ETLE_NCT_FCUND;

default : return EBR_OPEN_rcR_PH\DING;

}

}

if (flen = GetFLLeSize ((void *)fh, NULL) = INVALID_FrLE_SIZE)

{

CloseHandle ((void *) fh)

;

return ERR__WHTTK_CBIRINING_FrTESIZE;

}

do

{

atri.Add(pQtri = new SQtri ()) ;

if (!pQtri->Load((void *)fh))

{

CloseHandle ((void *) fh)

;

return ERR LOADING;

100

www.manaraa.com

}

}

while (pQtrl->nError != 0); // Load ok, so nError contains anount of bytes read

CloseHandle ((void *) fh)

;

IsScript ()

;

return NCERR;

}

EOQL SMacro : : IsScript (

)

{

int i, iitex, n;

for (i=0, iitBx=atri.GetUpperBound() ; i<=irtax; i++)

{

for (n=0; n<n£mountQrri, DocOrd[n] .ardID!=((SCmd *) (ard[i]))-xnrl; n++);

if (! (m_bIsScript = DocOrritn] .flags & FPCL)) break;

}

return m_bIsScript;

}

int SMacro: :Save (

)

{

int fh;

int i, irtBx;

if (!m_bHasEileNanie)

return EER_N0_FTLE1>]SME;

if (fh = CreateEile(LPCrSTR(FileNarre), OMKIC_WRITE, 0, NULL,

CREATEJEW, FII£_FLAG_WRITE_THRaXJl, NULL)

= DWAIJDJffiNDLE_VRLUE)

{

switch (GetLastError ()

)

{

case ERPCR_FTLE_EXISTS : return ERR_FLLE_EXISTS;

default : return ERR_OPEN_ErjR_WRITING;

}

}

for (i=0, iitax=cmd.GetUpperBound(); i<=imax; i++)

if (! (((SQrri *) (cnri.GetAt (i))) ->Save ((void *) fh)))

(

CloseHandle ((void *) fh)

;

return ERR_SAVHsG;

}

101

www.manaraa.com

CloseHandle((void *)fh);

return NCEFR;

}

int SMacro : :Overwrite (

)

{

int fh;

int i, infix;

if (IrnbHasFlIeName)

return ERRJTOJTLENSME;

if (fh = CreateEile(LPCTSTR(FileNane), GENEKEC_WRITE, 0, NULL,

C£EATE_ALWAYS, FnEJUGJWrTEJHPOXSl, NULL)

= INVALID_HSNDLE_VRLUE)

return ERRJ3EEN_ECR_wraTING;

for (i=0, inBx=ard.GetUrperBound() ; i<=imax; i++)

if (! (((SQtd *) (arri.GetAt(i)))->Save((VDid *)fh)))

{

CloseHandle ((void *) fh)

;

return EE^_OVEF5/JRITING;

}

CloseHandle ((void *) fh)

;

return NCERR;

}

int SMacro : : Execute (

)

{

int fh;

int i, imax;

if (!m_bHasFileNarte)

return EKR_NO_FILESBME;

if (fh = CreateFileC'CCKl", QENERrC_WRITE, 0, NULL,

OPENJXISnNG, EIIEJEiaSJJRnEJIHEOOSH, NULL)

= INVRLmjENIZEJffiLUE)

return EFR_peW_FORJXSJJYWG;

for (i=0, irtBX=and.GetUpperBound() ; i<=irrax; i++)

if (! (((SQtd *) (cnd.GetAt (i))) ->Execute ((void *) fh)))

{

CloseHandle ((void *) fh)

;

return ERR_EXBCUTIN3;

}

102

www.manaraa.com

CloseHandle (
(void *) fh)

;

return NCERR;

}

int SMacro : :GetError (

)

{

return nError;

}

const char *SM3cro: :GetFileNartie()

{

if (rnfcHasFileNanE)

return LPCTSTR(FileName) ;

else return NULL;

)

BOX SMacro: :Se1JileName(const char *pName)

{

int fh;

if (fh = CreateEile (pName, GENERIC_WRITE, 0, NULL,

CREAIE_NEW, FTnXJfflTUBOTEJCRyiAL, NULL)

= INVALID_HSNDLE_VALUE)

{

if (GetLastErrorO = ERRCR_FTLEJXISTS)

{

FileNatre = pName; // file exists -> name ok

return TRUE;

}

else

{

nError = EK*_INVAI2D_FILENAME;

return EALSE; // invalid handle AND file doesn't exist -> invalid name

}

}

else // valid handle -> file did not exist & was created -> name ok

{

CloseHandle ((void *)fh); // close file before deletion!!

if (!DeleteElle(pNane))

{

nError = ERR_TEMP_DELET1CN; // THIS should never happen!

return E2LSE; // valid handle AND file couldn't be deleted -> ???

}

ELleName = pName;

return TRUE;

}

103

www.manaraa.com

const char *SMacro: :GetMacroName()

{

return LPCISTRtMacrcName) ;

}

void SMacro: :Set^croName (const char *pNarre)

{

// TCWCRK: check for validity of pNaire as a rrHcroname

MacroName = pName;

}

//////////////////////////////////////

// STask constructor/destructor

//

STask:: STask ()

{

disknam9=tasknaTtie= (char *)0;

pri=0;

size=0;

data=NULL;

STask: :~STask()

{

if (disknatte) delete diskname;

if (tasknane) delete tasknarte;

if (data) delete data;

}

///////////////////////////////////////

// SOSPararrs constructor/destructor

//

SCSParans : : SOSParams (

)

{

// tbd

}

SCSParams :
: -SCSParams (

)

{

// tbd

}

///

// CQidDoc ccrrmands

104

www.manaraa.com

GndView.h

// Gndview.h : interface of the CGndView class

//

///

class CGndView : public CView

{

protected: // create frcm serialization only

CGndView();

DEnAJ^JDYNCREATE (CGndView)

// Attributes

public:

CGndDoc* GetDocurtentO;

// Cperations

public:

CMainTabDlg *m_pTabDlg; // main dialog holding all childs (frcm CTabDlg)

CCHScriptsDlg mjChDlgO

CCHTelemetryDlg m_ChDlgl

CCHMailDlg m_ChDlg2

CCHMsmoryDlg m_ChDlg3

CCHControlDlg m_ChDlg4

CCHOGControlDlg m_ChDlg5

CCHFileSystemDlg m_ChDlg6

CCHTaskCantrolDlg m_ChDlg7

// Child tab dialogs (frcm CTabDlgChild)

// telemetry data display

// non-user mailing surveillance/maintenance

// memory peek/poke

// low-level SCCS and PANSAT functions

// high-level functions: T/T cmd., Event Log, User Control

// file system maintenance

// task control & maintenance

struct PANSATFilelnfo PFI [MAXDIRS]

;

// Overrides

// ClassWizard generated virtual function overrides

//{ {AEX_VIKrUAL (CGndView)

public:

virtual void CnDraw(CDC* pDC); // overridden to draw this view

virtual void CnlnitialUpdate ()

;

protected:

virtual BOOL CnPreparePrinting(CPrintInfo* plnfo)

;

virtual void CnBeginPrinting (CDC* pDC, CPrintlnfo* plnfo)

;

virtual void CnEndPrinting (CDC* pDC, CPrintlnfo* plnfo)

;

//} }AFX_VTKTUAL

// Iirplementation

public:

virtual -CGndView ()

;

105

www.manaraa.com

#ifdef _DEBUS

virtual void AssertValid () const;

virtual void Cmp (CDurrpContex't& dc) const;

#endif

protected:

// Generated message map functions

BOOL m_bTabDlgUp;

CString strSectionDir;

CString strSectionExt;

CString strSectionDscrpt;

CString strSectionMacro;

protected:

// { {AFXJYEG (CGndView)

afxjnsg void CnUserAccess ()

;

afxjnsg void CnEndUserAccess ()

;

arx_msg void CnPreferences ()

;

//}}MX_MSG

DECLARE_MESSflGE_MAP (

)

};

#ifndef _DEBJG // debug version in Gndview.cpp

inline CGndDoc* CGndView: :GetCocument()

{ return (OGndCoc*)m_pDocunient; }

#endif

///

GndView.cpp

// Gndview.cpp : ittplsrientation of the CGndView class

//

#include "stdafx.h"

#include "Gnd.h"

#include "Gnddoc.h"

#include "mytabdlg.h"

iinclude "password.h"

tinclude "prefdlg.h"

tinclude "Gndview.h"

fifdef _EEBOG

#undef THIS_ETLE

static char BASED CODE THIS FILE[] = FILE ;

106

www.manaraa.com

#endif

///

// CGxTView

IMPLEWENT_DYNCREATE (CQxJView, CView)

BB3IN_MESSflGE_MAP (CQidView, CView)

//{ {AEX_MSG_mP(CGhdView)

CNj3CMyRMD(ID_ACCESS_I03CN, CnUserAccess)

CNJXiyMAM)(ID_flCCESS_IiCGOFr, CnEndUserAccess)

CN_CayNAND(ID_PREFEFENCES, dereferences)

//} }AEX_MSG_MAP

// Standard printing ccnmands

CNJXM>MC>(ID_ETLE_PRINr, CView: :CnFilePrint)

CNJD3yMRND(ID_FTLE_PIUOT_PREVIE>J, CView: :CnFilePrintPreview)

EM)_MESSfll3:_MM> (

)

///

// CGndView construction/destruction

CGxTView : : CGxTView (

)

{

int i;

strSectianDir = "Directories";

strSectionExt = "Extensions";

strSectionDscrpt = "Descriptions";

CGxffipp *pApp = (CQxlApp *)AfxGetApp() ;

for (i=0; i<MAXDIRS; i++)

{

PET[i].Dir = pSrp-Xfel^rofileStcLngtstrSectionDir, def[i]);

PFI[i].Ext = pApp-X3etProfileString (strSectionExt, def[i]);

PFI[i].Des = pf^p->GetProfileString (strSectionDscrpt, def[i]);

}

mJ*TabDlgUp=RALSE;

}

CQxJView : : -CGxTView (

)

{

int i, irrax;

CGndDoc *pDoc = (CGxlDoc *)GetDocument() ;

// destroy tabbed dialog

if (m_bTabDlgUp)

107

www.manaraa.com

{

m_pO'abDlg->DestroyWindcw () ;

delete m_pTabDlg;

m_bTabDlgUp = FMJSE;

)

// destroy all loaded macros stored in pDoc->m. ~3yfecro takes care of all necessary stuff.

for (i=0, iTB>F=pDoc->m.GetUpperBound() ; i<=imax; i++)

delete (SMacro *)pDoc-Mn.GetAt(i);

// destroy all built-in catmands stored in pDoc->c.

for (i=0, irrH>F^)Doc->c.GetUpperBound(); i<=imax; i++)

delete Ofacro *)pDoc->c.GetAt(i) ;

}

///

// CGhdView drawing

void CGndView: :CnDraw(CDC* pDC)

{

CGndDoc* pDoc = GetEocument ()

;

ASSEKT_VMJD(pDoc) ;

// TODO: add draw code for native data here

}

///

// 03ndView printing

ECQL 03ndView::CnPreparePrinting(CPrintInfo* plnfo)

{

// default preparation

return DoPreparePrinting (plnfo)

;

}

void OSTdView::CriBeginPr2Jiting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)

{

// TODO: add extra initialization before printing

}

void CGTriView::Q-iEMPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)

{

// TCCO: add cleanup after printing

}

///

// OGndView diagnostics

108

www.manaraa.com

#ifdef _DEHJG

void CGhdView: :AssertValid() const

{

CView: :AssertValid()

;

void CGndView: : Dutip (CXXxnpContextS dc) const

{

CView: :Dump(dc);

}

CQidDcc* CQTdView::GetDocutent() // non-debug version is inline

{

ASSERT (mjDDocument->IsKindOf (HJNnME_CLASS (CQndDoc))) ;

return (CGxiDoc*)m_pDocum£nt;

}

#endif //_£EBJG

///

// CQidView message handlers

void CGndView: :CnUserAccess()

{

CPasswordDlg dig;

if (dlg.D=Modal()==ICCK)

{

if (!m_bTabDlgUp)

{

// initialize controls in child dialogs

// MyDataExchange (TFDE)

;

// allocate your tab dialog object

// pass in parent window

m_pTabDlg = (CMamTabDlg*) new CMainTabDlg(this) ;

// add child tabs to tab dialog internal list

mjffabDlg->flddChnol)ialog(CCHScriptsDlg::IDD, (CTabDlgChild *)&m_ChDlgO)

,

m_jTabDlg->A±JChildDialog (CCHTelemetryDlg : : IDD, (CTabDlgChild *) SmChDlgl)

;

mjffabDlg->flddChildDialog (CCHMailDlg : : IDD, (CTabDlgChild *) &m_ChDlg2)

,

m^abDlg->flddChildDialog (CCHMsmoryDlg: : IDD, (CTabDlgChild *) sm_ChDlg3)

,

m^abDlg->MdChildDialog(CCHControlDlg::IDD, (CTabDlgChild +)&m_ChDlg4)

m_pTabDlg->flddChildDialog (CCHCSCcntrolDlg: : IDD, (CTabDlgChild *) Sm_ChDlg5)

,

m_pTabDlg->flddChildDialcg (CCHFileSystemDlg : : IDD, (CTabDlgChild *) &m_ChDlg6)

,

m_pTabDlg->MdChildDialog (CCHTaskControlDlg: : IDD, (CTabDlgChild *) &m_ChDlg7)

,

mjChDlgO.pPFI = &PF1;

109

www.manaraa.com

// fire off tab dialog

// if you didn't pass the parent window to the constructor

// you should pass in the parent window as the second parameter here

m_pTabDlg->Ddybdeless (ayainTabDlg : : IDD, this)

;

m_bTabDlgUp = TRUE;

}

}

}

void CQidView: :CnEndUserAccess

{

if (m_bTabDlgUp)

{

m_pTabDlg->EtestroyWindow ()

;

delete m_pTabDlg;

Invalidate () ;

m_bTabDlgUp = EALSE;

}

}

void CQndView: :CnPreferences (

)

{

int i;

CPrefDlg dig; // constructor rail

dlg.pOldPFI = &PFI; // initialize dig data

CGndApp *pApp = (C&idApp *)AfxGetApp() ; // update INI settings frcm Qid.INI

for (i=0; i<MAXDIRS; i++)

{

PFI[i] .Dir = p^p->GetirofileStririg(strSectionDir, def[i]);

PFI[i] .Ext = p?^p-XfetProfileString(strSecticnExt, def[i]);

}

if ((dlg.DcMDdalO = IDCK) &S (dlg.m_bHasChanged)

)

{

for (i=0; i<MAXDIBS; i++) // user pressed CK: Directory setting validation

{

p^p->WriteProfileStxirig(sti5ecticnDir, def[i], dlg.NewPFI[i] .Dir);

}

}

}

void oaxJView: :QiInitialUpdate(

{

110

www.manaraa.com

int i;

char buf[5]; // enough for 10,000 macros

CString strMPath;

strSectionMacro = 'Macro";

CGidDcc *pDoc = (CQxJDoc *) GetDocument () ;

CQidApp *pApp = (CGndApp *)AfxGetftpp();

// load all macros referenced in *.INI to pDcc->m. The SMacro constructor actually loads 'em.

for (i=0; ; i++)

{

strMPath = pApp-XfetProfileStoingfstrSectionMacro, itoa(i, buf, 10),";");

if (!stxcnp(IPCrSTR(strMPath),";")) break;

pDoc->m.Add(new SMacro (LPCTSTRt strMPath))) ;

}

// get all built-in carmands to pDoc-X:

for (i=0; KnftTOuntCmd; i++)

pDcc->c.Add(new SMacro (i)) ;

CView: :CrOnitialUpdate () ;

}

MainFrm.h

// mainfrm.h : interface of the CMainFrame class

//

///

class CMainFrame : public CFrarreWnd

{

protected: // create frcm serialization only

CMainFrame () ;

CET1APE_DY1CREATE (CMainFrarre

)

// Attributes

public:

// Operations

public:

// Overrides

// ClassWizard generated virtual function overrides

// { {AFXVrKTUAL (CMainFrame)

//}}AFX_VTKIuAL

// Implementation

111

www.manaraa.com

public:

virtual -CMainFrane () ;

#ifdef _DEBU3

virtual void AssertValid () const;

virtual void Eurrp (CDumpContextS dc) const;

#endif

protected: // control bar embedded members

CStatusBar m_wndStatusBar;

CToolBar mjwndToolBar;

// Generated message map functions

protected:

// { {AEXMSG (CM=iinFrame)

afxjnsg int CnCreate (LPCFE7\TESTRDCT IpCreateStruct) ;

//}>AEX_MSG

DECLARE_MESSAGE_MM> (

)

};

///

MainFrm.cpp

// mainfrm.cpp : implementation of the CMainFrame class

//

#include "stdafx.h"

#include "Gnd.h"

#include "gnddoc.h"

#include "mainfrm.h"

#include <stdio.h>

iifdef _DEBU3

#undef THIS_FILE

static char BASEDJXDE THIS_FILE[] = _FILE_;

#endif

///

// QfeinFrame

IMPLE]yIEM'_DY^O^EME(C^feinFrame, CFrameWnd)

BEEINJVlESSAGEJ^lAPtCrfeinFrame, CFrameWnd)

//{ {AEX_MSG_MAP (CMainFrame)

GN WM CRE7VTE0

112

www.manaraa.com

//}}AFX_MSG_MAP

Q©_MESSBG£_NW' {

)

///

// arrays of IDs used to initialize control bars

// toolbar buttons - IDs are carmand buttons

static UINT BASED_CCDE buttons!] =

{

// same order as in the bitmap 'toolbar.tup'

IDJEILEJEW,

ID_FTLE_OFEN,

ID_FILE_SAVE,

ID_SEPARKDDR,

ID_EDIT_COT,

ID_EDIT_COPY,

IDJEDIT_PASTE,

ID_SEEARATCR,

ID_FILE_ERrwr,

ID_APP_ABCUr,

};

static UINT BASED_CODE indicators!] =

{

ID_SEPARATCR, // status line indicator

iD_iNnrcsTCR_caES,

ID_INDICATCR_NUM,

ID_INDICATOR_SCRL,

>;

///

// CMainFrame constmction/destruction

CMainFrame : :CMainFrame (

)

{

}

CMainFrame: : -CMainFrame (

)

{

}

int CMainFraroe: :OCreate(LPCPF»TESTFUCT lpCreateStruct)

(

if (CFrameWnd: :OiCreate (lpCreateStruct) = -1)

return -1;

if (!m wndTcolBar. Create (this) |]

n:

www.manaraa.com

!mjwndToolBar . LoadBitnap (IDR_MAINFRAME

)

!m_wndToolBar . SetButtons (buttons

,

sizeof (buttons) /sizeof (uTNT))

)

TRACE0("Failed to create toolbar\n")

;

return -1; // fail to create

if (IrnwndStatusBar. Create (this) [|

ImvmdStatusBar . SetTndi cators (indicators,

sizeof (indicators) /sizeof (UENT))

)

{

TRACEO ("Failed to create status bar\n");

return -1; // fail to create

// TCDO: Delete these three lines if you don't want the toolbar to

// be dockable

m_wndroolBar . EnableDocking (CBRS_ALIGN_fiNY) ;

EnableDoc)diig(CBRS_ALIGN_ANY) ;

DockControlBar (&m_wndTooIBar) ;

// TCCO: PeitDve this if you don't want tool tips

m_wndToolBar . SetBarStyle (itrwndToolBar .GetBarStyle () |

CBPSJXXXTTPS | CBRS_FLYBY);

/*

Ofenu *pJfenu = Get]ytenu()->GetSutiyfenu(l);

p:fenu->FriableiyfenuItem(ID_ACEESS_LCGOFF, MF_GRAYED
|
MF_BYCCMyRND) ;

*/

return 0;

}

///

// CMainFrariB diagnostics

#ifdef _DEBUG

void OYkihFraire::AssertValid() const

{

CFrame!\hd: :AssertValid () ;

}

void CMainFrame : : Dunp (CDurtpCcntext& dc) const

{

CFrameWnd: :Durrp(dc) ;

}

#endif // DEBUG

114

www.manaraa.com

///

// CMainFrame message handlers

115

www.manaraa.com

B. DIALOG SOURCECODE

Every groundstation child dialog has its own include (*.h) and implementation

(*.cpp) file. Except the Script dialog (ChScript) all other dialogs do not have any special

code besides the MSVC provided framework yet. That is why they are not listed here

(ChTlmtry, ChMail, ChMemory, ChOSCtrl, ChCtrl, ChFileSy, ChTaskCt, MainTab).

ChScript.

h

Include file for Scripts tabbed dialog

ChScript. cpp Implementation file for Scripts tabbed dialog

MyTabDlg.h Include file for all child dialog include (*.h) files

ChScript.h

// chscript.h : header file

//

///

// CCHScriptsDlg dialog

class CCHScriptsDlg : public CTabDlgChild

{

// Construction

public:

CCHScriptsDlg (CWnd* pParent = NULL) ; // standard constructor

// Dialog Data

// { {AEX_DAIA (CCHScriptsDlg)

enura { IDD = IDD_CH_SCRIPrS } ;

// NOTE: the ClassWizard will add data nerbers here

//)}AEX_DAIA

struct EANSATJllelnfo (*pPET) [MAXDIRS] ;

CString m_strFilter, m_strGndDir;

VCRD m_hlBditM3de; // hl=HotLinked

VCRD mJiLScriptType;

long m_nCurCcde;

SMacro m_ActualMacro;

nPFNFTT.FTJBMR m_ofn;

// Overrides

116

www.manaraa.com

// ClassWizard generated virtual function overrides

// { {AEX_VTKTUAL (OCHScriptsDlg)

protected:

virtual void DoDataExchange (CDataExchange* pDX); // DDX/DDV support

//}}AE< VIRTUAL

// Implementation

void NevJYIacro () ;

protected:

// Generated message map functions

// { {AFXJYEG (CCHScriptsDlg)

virtual BOOL OnlnitDialog ()

;

afx_msg void OnEraseEditline ()

;

afxjnsg void OnCutToEditline ()

;

af>:_msg void OnlnsertBditl Ine () ;

afxjnsg void Onlnsert () ;

afxjnsg void OnEdit () ;

afxjnsg void Onload ()

;

afxjnsg void OnSave () ;

afxjnsg void OnSaveAs () ;

afxjnsg void OnNew () ;

afxjnsg void OnDelete () ;

a&jnsg void OnLClickListQnd () ;

//} }AFX_MSG

IDEELARE MESSAGE MAP()

ChScript.cpp

// chscript.cpp : implementation file

//

#include "stdafx.h"

#include "Gnd.h"

#include "chscript.h"

iifdef JDEBUG

#undef THIS_ETLE

static char BASELJCODE THIS_FILE[] = _FHE_

#endif

#define TYPEjSCRIPr 1

#define TYPE MACRO 2

///

// CCHScriptsDlg dialog

117

www.manaraa.com

OCHScriptsDlg:: OCHScriptsDlg (CKnd* pParent /*=NULLV)

: CTabDlgChild(CCHScriptsDlg::IIX), pParent)

{

//{ {AEX_EftIA_INIT (OCHScriptsDlg)

// NOTE: the ClassWizard will add member initialization here

//}}AEX_EKm_INIT

m_hlEditM3de = 0;

m_hlScriptType = 0;

}

void OCHScriptsDlg: :DoCataExchange(CEataExchange* pDX)

{

CTabDlgChild: : DoDataExchange (pDX) ;

//{ {AEXJ3ATAjyftP (OCHScriptsDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here

//} }AEX_mEA_MAP

}

BEXCTNjyESSAGEJ&P (OCHScriptsDlg, CTabDlgChild)

//{ {AEX_MSG_MAP (OCHScriptsDlg)

CNjCOWAND(irC_SCKrPT_EF!ASELINE, CnEraseEdxtline)

CNJCOMOT)(IDC_SCRIPTJCUrTOEL, OnCutToEditline)

CNCaVMAND (IDC_SCRIPT_INStKl'KL, QnlnsertEditline)

CNJXiyMAND(IDC_SCRIPT_INSERr, Onlnsert)

CNjCCMyRND(IDC_SCRIPT_EDIT, OnEdit)

CNJCCI*W©(IDC_SCRIPT_IJCAD, OnLoad)

CN_CCMylAND(IDC_SCRIPT_SAVE, OnSave)

CNJCaWAND(IDC_SCRIPT_SAVEAS, CnSaveAs)

CNjCaWAND(IDC_SCBIPT_NEW, CnNew)

CNjCCWmD(irr_SCRIPT_DEI£TE, OnDelete)

CNjCCKnO.tl^J^UITCNDCWN, IDC_SCRIFTLISTCMD, CnlCliclcListQld)

//}}AEX_MSG_MAP

END MESSAICE MAPO

///

// OCHScriptsDlg message handlers

BOOL OCHScriptsDlg: :OnInitDialog()

{

CTabDlgChild: :QiInitDialog() ;

int i;

118

www.manaraa.com

CHBRadio *pEditMode = (CHBRadio *)GetDlgItem(IEX:_SCKIETJOMa£DIT)

;

CHBRadio *pScriptType = (CHBRadio *)GetDlgItan(IDC_SCRIPr_SCRIPT);

CHList *pQir3List = (CHList *)GetDlgItem(IDC_SCRIPr_LISrCMD) ;

CHList *pScriptlist = (CHList *)GetDlgItem(IDC_SCBIPr_LIsrrsCRIPT)

;

CHEait_SS *pEditQrri = (CHEdit_SS *)GetDlgItan(IEC_SCRIET_EDITCMD) ;

CHEdit_SS *pEditP = (CHEdit_SS *)GetDlgItan(IDC_SCRIPr_P) ;

pEditM3de->SetCaraT ,i nk (TRUE, &m_hl£ditMode) ;

pEditM3de->SetState (TRUE, FALSE);

pScriptType->SetDataT ,i nk (TRUE, Sm_hlScriptType)

;

pScriptType->SetState (TRUE, FALSE);

for (i=0; i<nftmountQirl; i++)

pCmdList->AddItem(DccCmd[i] .comrand) ;

pCrndList->SelectEBta(DooCttd[0] .oatmand, HL_SELECT)

;

pScriptList->AddItem(" (next) ") ;

pScriptList->SelectEata("(next)", HL_SELECT);

pEditQtd->SetWindov/Text ("") ;

pEditP->SetWxndcWrext ("")

;

m_strGxlDir = "D:\\Ground";

m_strFilter = "All Files (*.*)";

m_strFilter += '\0';

mjstrFilter += "*.*";

m_strFilter -k= '\0';

for (i=0; i<MAXDIRS; i++)

{

mjstrFilter +•= (*pPFI) [i] .Des;

m_strFilter -h= '\0';

m_strFilter += (*pPFI) [i] .Ext;

mjstrFilter += '\0';

}

m_strFilter += '\0';

mjDfn.lpstrEllter = LPCTSTR(m_strFilter)

;

m_ofn.lStructSize = sizeof (m_ofn)

;

m_ofn.hwndOwner = mjbWnd;

m_ofn.hInstance = NULL;//

m_ofn.lpstrCustcmFilter = NULL;//

mjofn.nMaxCustFilter = 0;//

mjofn.nFileOffset = 0;//

m_ofn.nFileExtension = 0;//

m_ofn.lCustData = 0;//

m_ofh.lpfnHook = NULL;//

mjofn.lpTemplateNaitE = NULL;//

119

www.manaraa.com

return TRUE; // return TRUE unless you set the focus to a control

// EXCEPTION: OCX Property Pages should return EALSE

}

void CCHScriptsDlg: :CnEraseEditlme()

{

CHEdit_SS *pEditQtd = (CHEdit_SS *)fetDlgItem(ir£_SCPIPTjnriCMD) ;

CHEdit_SS *pEditP = (CHEdit_SS *)GetDlgItem(ICC_SCRIPT_P) ;

pEditQrd->SetWindcWrext ("")
;

pEditP->SetWindcWText ("")

;

}

void CCHScriptsDlg: :CnInsertEditline()

{

CString str;

int n, ix;

CHList *pScriptList = (CHList *)GetTJlgItem(IDC_SCI«PTLISTSCRIPT) ;

CHEdit_SS *pEditCnid = (CHEdit_SS *)tetDlgItern(IIT_SCK[PT_EDrTClyD) ;

CHEdit_SS *pEditP = (CHEdit_SS *)GetDlgItem(ICC_SCRIPT_P)

;

CHBPadio *pScnptType = (CHBRadio *)GetDlgItem(IDC_SCRIPT_SCRIPT) ;

CHEPadio 'pMacroType = (CHBRadio *)GetDlgItem(IlX_SCPIPT_NRCRD);

pEditCtrd-XSetWindcWText (str) ;

ix = pScriptTii st->InsertItem(pScripfTn st-XfetCurSel () , (void *) LPCTSTR(str)
]

pScriptList->SetCurSel (pScriptList-X^etCurSel (

) -1)

;

for (n=0; n-cnflinountQtri, strarp(DocCttd[n] .ccrrrrand, str) !=0; n++) ;

m_flctualTfecro.ard.InsertAt(ix, new SCmd (n)) ; //CPtrArray: InsertAtO

m_ActualMacro .m_bHasChanged==TRUE;

if (m_ActualMacro.IsScript()) pScriptType->SetState (TRUE, TRUE);

else pMacroType->SetState (TRUE, TRUE)

;

}

void CCHScriptsDlg: :CnCutToEditl±ne()

{

char str [40];

int ix;

CHList *pScriptList = (CHList *)GetDlgItem(IDC_SCRIPT_LISTSCRIPT);

CHEdit_SS *pEditCnd = (CHEdit_SS *)GetDlgItem(ITX;_Sa^PTJI)rTCMD) ;

CHEdit_SS *pEditP = (CHEdit_SS *)GetDlgItem(IDC_SCRIPT_P)

;

CHBRadio *pScriptType = (CHBRadio *)GetDlgItem(IDC_SCRIPT_SCRIPT)

;

CHBRadio *pMacroType = (CHBRadio *)GetDlgItem(IDCJSCK[PT_MACRD) ,•

pScripa^t->&tCurData(str, 39) ;

if (strcnp(str, "(next)"))

{

120

www.manaraa.com

pScriptList->DeleteItem(ix = pScriptList-X3etCurSel ()) ;

pScriptList->SetCurSel (pScripfT .i st->GetCurSel 0+1)

;

pEditQiri->SetWindawText (str) ;

m_ActiialMacro.aTd.RsmoveAt(ix) ; //CPtrArray: RenrcveAtO

mJVrl3jal^cro.m_hHasChanged=TPDE;

if (m_ActualMacro.IsScript()) pScriptType->SetState (TRUE, TRUE);

else pMacroType->SetState (TRUE, TRUE)

;

}

}

void CCHScriptsDlg: :CnInsert (

)

{

int ix, n;

char str [40];

CHList *pCmdList = (CHList *)GetDlgItem(ICC_SCRIPT_LISTCMD) ;

CHList *pScriptList = (CHList *)GetDlgItem(IDC_SCRIPT_LISTSCKrFT)

;

CHEdit_SS *pEditCmd = (CHEdit_SS *)GeU)lgItan(IDC_SCRIPT_EDITCMD) ;

CHEdit_SS *pEditP = (CHEditJSS *)GetDlgItem(IDC_SCRIPT_P) ;

CHBRadio *pScriptType = (CHBRadio *)GetDlgItem(IDC_SCPIPT_SCRIPT)

;

CHBRadio *pMacroType = (CHBRadio *)GetDlgItem(IDC_SCRIPT_iyWCRO) ;

pQndList-XfetCurCata (str, 39) ;

pEditCnri->SetWindowT&xt (str) ;

for (n=0; n<nAtrountCmd, stratp(CocQtri[n] .ccmrand, str) !=0; n++);

if (DccCmd[n] .wParam_Type=^TVOID && DocQnd[n] . lParam_Type=TVOID)

{

ix = pScript^st->InsertItan(pScriptList-XfetCurSel(), str);

pScriptList->SetCurSel (pScriptList-XfetCurSel () -1) ;

mj^ctiial Macro. and. InsertAt (xx, new SCmd(n)) ; //CPtrArray: InsertAtO

m_ActualMacxo .m_MasChanged=TRUE;

if (mJ^ctualMacro.IsScriptO) pScriptType->SetState (TRUE, TRUE);

else r^fecroType->SetState (TRUE, TRUE)

;

}

>

void CCHScriptsDlg: : CnFd.it (

)

{

char str [40];

CHList *pCrrdList = (CHList *)GetDlgItem(IDC_SCPJPT_LISTCMD) ;

CHEdit_SS *pEditCmd = (CHEdit_SS *)Get£lgItm(irr_SCK[PT_EDITCMD) ;

CHEdit_SS *pEditP = (CHEdit_SS *)GetDlgItem(LDC_SCRIPT_P)

;

pQrdList-X3etCurData (str, 39) ;

pEditQind->SetWindowText (str) ;

}

121

www.manaraa.com

void CCHScriptsDlg: :CnLoad()

{

char buf [256];

char frame [256];

buf[0] = '\0';

mjofn.nFilterIndex = mJilScriptTyp9=TYPE_SCRIPT ? rx_SCRIPT+2 : IX_MACRO+2;

m_ofn.lpstrFile = buf;

mofn.nMaxFile = sizeof (buf)

;

mjDfn.lpstrFileTitle = frame;

mjofn.nMaxFileTitle = sizeof (frame) ;

mjofn.lpstrlnitlalDir = LPCTSTR(mJxl3criptrype==TYPE_SCK[ET ?

(*pPFI) [IX_SCRIPr] .Dix :

(*pPFI) [IX_MACRO] .Dir) ;

m_ofn.lpstrTitle = "Load Macro";

m_ofn. Flags = OFNJILHyDSTEXIST | OEN_PSTHMUSTEXIST | OFNHIDEBEADCNLY;

rnofn.lpstrDefExt = LPCT^TR(mJil^criptIVpe=K[YPE_SCK[PT ?

(*pPFI) [IX_SCRIPT] .Ext :

(*pPFI) [IX_MACFO] .Ext) ;

CnNewO;

if (GetCpenFileNanE(&ra_ofn))

if (m_ActualMacro.Load() != NCERR)

MessageBox ("Error while loading macro!", "load Macro", MB_CK) ;

}

void CCHScriptsDlg: :CnSave (

)

{

int nSavePesult, ioresult=NCERR;

CString strText, strHeader;

ECTX blsScript;

CHBBadio *pScriptType = (CHBRadio *)GetDlgItem(IDC_SCRIPT_SCRIPT)

;

CHBRadio *pMacroType = (CHBRadio *)GetDlgItem(IIX;_SCRIPT_MACFO) ;

if (blsScript = m_ActualMacro.IsScript()) pScriptType->SetState (TRUE, TRUE);

else pMacroType->SetState (TRUE, TRUE)

;

if (m_Actia 1 Macro .m_bHasFileName

)

{

if (ioresult = mJ^ctmlMacro.Save()=ERR_FTLE_EXISTS)

{

strText = ErrAry[ioresult] + CString ("\nChoose CK to overwrite it.");

strHeader = "Save " + m_flctia 1 Macro . FileName

;

nSaveResult = MessageBox (strText, StrHeader, MB_ICCNTNFCRMAnCN | MB_CKCANCEL)

if (nSaveResult=IDCK) ioresult = m_Ac1^ialMacro.Cverwrite() ;

}

122

www.manaraa.com

}

else CnSaveAs ()

;

if (ioresult!=NCERR)

{

MessageBox(ErrAry[ioresult] ,"File Error", MB CK)

;

return;

}

m_Acd 1a 1 Macro .rnbHasChanged = FALSE;

}

void CCHScriptsDlg: :OiSaveAs ()

{

char buf[256];

char fname [256] ;

buf[0] = '\0';

BCOL blsScript;

CHBRadio *pScriptType = (CHBRadio *)GetDlgItem(IDC_SCRIFT_SCRIPr)

;

CHBRadio *pMacroType = (CHBRadio *)Get£)lgItem(IDC_SCRIPr_MACRD) ;

if (blsScript = m_ActualMacro.IsScript()) pScriptType->SetState (TRUE, TRUE);

else pMacroType->SetState (TRUE, TRUE)

;

m_ofn.nFilterIndex = blsScript ? IX_SCRIPT+2 : IX_MACR02;

mjDfn.lpstrFile = buf;

m_ofn.riMaxFile = sizeof(buf);

m_ofn.lpstxFileTitle = fname;

mjofh.nMaxFileTitle = sizeof (fname)

;

mjofn.lpstrlnitialDir = LPCTSTR (blsScript ?

(*pPFI) [rX_SCRIPT] .Dir :

(*pPFl) [K_MACRD] -Dir) ;

m_ofn.lpstrTitle = "Save Macro As. .
.";

m_ofn. Flags = CFNJ^ERWRi'i'EPRCMPT |
OFN_HIDERFACCNLY;

mjofn.lpstrDefExt = LPCT3TR(bIsScript ?

(*pPFT) [IX_SCRIPT] .Ext :

(*pPFT) [rxjyFCRD] .Ext) ;

if (GetCpenFileNarre (&m_ofn)

)

{

m_ActualMacro.FileName = m_ofn.lpstrFile;

m_ActualMacro.m_bHasFileName = TRUE;

if (m_ActualMacro.Save() = NCERR) m_Actua 1 Macro .m_bHasChanged = FALSE;

}

}

void OCHScriptsDlg: :NevMacro()

{

int i, imax;

123

www.manaraa.com

CHList *pScriptList = (CHList *)GetDlgItem(IDC_SCRIFT_LISTSCRIFT) ;

CHBditJSS *pBditCmd = (CHEdit_SS *)GetDlgItem(ICC_SCEy:Pr_EDITCMD) ;

CHBditJSS *pBditP = (CHB±Lt_SS *)GetDlgItan(IDC_SCRIET_P) ;

for (i=0, imax=m_flc&w 1 Macro . and . GetUpperBound () ; i<=imax; i++)

delete ((SQtri *) (mJttmliy&cro.and.GetAtli)));

m_ActualMacro . and . RemoveAll () ;

mJVctualMacro.mjoHasChanged = E7&SE;

irrBx==m_ActualMacro . carl . GetUpperBound () ;

for (i=0, iinax=pScriptList->GetCount () -2; i<=imax; i-H-)

pScriptT ii ,st->DeleteItem () ;

pScriptList->SetCurSel (0)

;

pEditQtri->SetWindowText ("") ;

pBditP->SetWindcWText (" ") ;

}

void CCHScriptsDlg: :CnNew()

{

int nBesult, ioresult=NCERR;

CString strText, strHeader;

if (nvflcti la 1 Macro .m_hHasChanged)

{

nResult = MessageBoxCThe current macro has been changed. \nDo you want to save it first?"

"Load or New Macro",MB_IOCNQUESTIGN
| MSJYESNCCflNCEL) ;

if (nResult= IDYES)

{

CnSave () ;

NewMacro ()

;

}

else if (riResult=IENO)

NewMacro ()

;

}

else NewMacro ()

;

}

void CCHScriptsDlg: :CnDelete (

)

{

char buf [256];

char fname[256];

buf[0] = '\0';

CString strText;

m_ofn.nFilterIndex = mJ^lScriptType==TiTE_SCRIPT ? rX_SCRIPr+2 : K_MACRCH-2;

m_ofn.lpstrFile = buf;

mjofn.nMaxFile = sizeof (buf);

m ofn.lpstrFileTitle = fname;

124

www.manaraa.com

mjofn.nMaxFileTitle = sizeof (fnane) ;

m_ofn.lpstrInitialDir = LPCTSTRCm_MScriptType=<rYFE SCRIPT ?

(*pPFT) [K_SCRIPT] .Dir :

(*pPFT) [H_MACRO] .Dir) ;

mjofn.lpstrTitle = "Delete Macro";

m_ofn. Flags = OFN_FTLEMUSTEXIST
| OFN_PflTHMUSTEXIST

| OFNJtEDEREADCNLY;

m_ofh.lpstrDefExt = lKTrSTR(mJilSCTiptType=^rYPE_SCRIPT ?

(*pPFT) [rx_SCRIPT] .Ext :

(*pPFI) [m_MRCFO] .Ext) ;

if (GetCpenFileNanne(&m_ofn)

)

{

if (! DeleteFile (m_ofn . IpstrFile)

)

{

strText = CString("Couldn't delete ") + m_ofn. IpstrFile;

MessageBoxtstrText, "Delete File", MB ICCNINFCRyKTICN
I
MB CK)

,

void CCHScripteDlg::CriLClickListCind()

<

}

MyTabDlg.h

// mytabdlg.h : include file for all tabbed dialog .h files

//

// class: Merrber variable:

#include "maintab.h" // CMainTabDlg mJFabDlg;

(see Qidview.h)

#include "chscript.h" // CCHScriptsDlg m ChDlgO

#include "chtlmtry.h" // CCHTelemetryDlg m_ChDlgl

#include "chmail.h" // CCHMailDlg m ChDlg2

#include "chmennory.h" // OCHMaroryDlg m_ChDlg3

#include "chctrl.h" // CCHControlDlg m ChDlg4

#include "chosctrl.h" // CCHCSControlDlg m ChDlgS

#include "chfilesy.h" // CCHFileSysterrDlg m_ChDlg6

#include "chtaskct.h" // CCHTaskControlDlg m_ChDlg7

C. MISCELLANEOUS

Gnd.RC Resource file for Dialog Editor

125

www.manaraa.com

Resource.

h

Resource variables definition include file

Password, h Include file for Password dialog

Password, cpp Implementation file for Password dialog

PrefDlg.h Include file for Preferences dialog

Pre/Dig. cpp Implementation file for Preferences dialog

Gnd.RC

//Microsoft Visual C++ generated resource script.

//

#iriclude "mfcwidg.h"

#include "resource. h"

///

//

// Generated frcm the TEXITNCLUDE 2 resource.

//

#include "afxres.h"

///

#undef APSTUDIO READONLY SYMBOLS

tifdef APSTUDIOJENVOKED

///

//

// TEXTINCLUDE

//

1 TEXTINCLUDE DISCARDABLE

BEGIN

"resource.h\0"

END

2 TEXTINCLUDE DISCARDABLE

BEGIN

"#include ""afxres.h""\r\n"

"\0"

END

3 TEXTINCLUDE DISCARDABLE

BEGIN

"tinclude ""res\\Gnd.rc2"" // non-Microsoft Visual C++ edited resources\r\n"

126

www.manaraa.com

"\r\n"

"#define JiFXJO_SPLlTTERJ>E3DUPCES\rV)."

"#defme J^XjrajXEJ^SOOPCESNrXn"

"#define JiK<J^JTRACKER_RESCUPCES\r\n''

"#define JiFXJC)_PPOPERIY_RESOURCES\r\n"

"#include ""afxres.rc"" \011// Standard ccnponents\r\n"

"#include ""afxprint.rc""\011// printing/print preview resources\r\n"

"NO-

END

///

#endif // APSTUDIO INVOKED

///

//

// Icon

//

IDR MAINFRAME ICCN DISCARDABLE "resWGnd.ico"

///

//

// Bitmap

//

IDR MAINFRAME BITMAP MOVEABLE PURE "resWtoolbar.tnp"

///

//

// Menu

//

IDR_MAINFRAME MENU PRELCAD DISCARDABLE

BEGIN

POPUP "SFile"

BEGIN

MENUTTEM "SNew\tCtrl+N",

MENUTTEM "iCpen. . AtCtrl+O",

MENUTTEM "&Save\tCtrl+S",

MENUTTEM "Save &As...",

MENUTTEM SEPARATCR

MENUTTEM "&Print. . AtCtrl+P",

MENUTTEM "Print Pre&view",

MENUTTEM "P&rint Setup...",

MENUTTEM SEPARATCR

MENUTTEM "Recent File",

ID_FTLE_NEW

ID_FTLE_OPEN

ID_FTLE_SAVE

ID_FTLE_SAVE_AS

ID_FTLE_PPJNT

ID_FI1£_PRINT_PREVIEW

ID_FTLE_PRINT_SETUP

ID FTLE MRU FUEL, GRAYED

127

www.manaraa.com

MENUTTEM SEPARATOR

MENUITEM "E&xit",

END

POPUP "Access"

BEGIN

MENUITEM "Logon",

MENUITEM "Logoff",

END

MENUITEM "Preferences",

POPUP "SView"

BEGIN

MENUITEM "STcolbar",

MENUITEM "&Status Bar"

END

POPUP "&Help"

BEGIN

MENUITEM "&About Gnd.

.

END

POPUP "Debug"

BEGIN

MENUTTEM "Load Macro",

END

ID APP EXIT

ID_ACCESS_LOSON

ID_ACCESS_LOSOFF, GRAYED

ID PREFERENCES

ID_VTEW_TOOLBAR

ID VIEW STATUS BAR

ID APP ABCUT

ID DEBUG LOAEMACRO

END

///

//

// Accelerator

//

IDR_MAINFRAME ACCHERATCRS PRELOAD MOVEABLE PURE

BEGIN

"C", IDJDITOOPY, VIRTKEY,

"N", ID_FILE_NE«, VIRTKEY,

"0", ID_FTLE_OPEN, VIRTKEY,

"P", ID_FTLE_PRINT, VIRTKEY,

"S", ID_FTLE_SAVE, VIRTKEY,

"V", ID_EDIT_PASTE, VIRTKEY,

VK_BACK, ID_EDIT_UNDO, VIRTKEY,

VK DELETE, ID EDIT CUT, VTRTKEY,

VK_F5, irx:_SCRIPT_CUTTCEL, VIRTKEY,

VK_F6, ID_NEXT_PANE, VIRTKEY,

VK_F6, ID_PREV_PANE, VIRTKEY,

VK_INSEKr, ID_EDIT_OCEY, VIRTKEY,

VK INSERT, ID_EDrT_PASTE, VIRTKEY,

"X", ID_EDIT_CUT, VIRTKEY,

"Z", IDJEDITJJNDO, VIRTKEY,

CONTROL, NCTNVERT

CONTROL, NOrNVERT

CONTROL, NCTNVERT

CONTROL, NOINVERT

CONTROL, NOINVERT

CONTROL, NOINVERT

ALT, NOTNVERT

SHIFT, NOTNVERT

NOTNVERT

NOTNVERT

SHIFT, NOTNVERT

CONTROL, NOINVERT

SHIFT, NOTNVERT

CONTROL, NOINVERT

CONTROL, NOTNVERT

128

www.manaraa.com

END

///

//

// Dialog

//

IDD_ABCUrECK DIALOG DISCARDABLE 34, 22, 217, 55

STYLE DSJCDALFRAME |
WS_POPUP

| WSJAPTTCN | WS_SYSMENU

CAPTION "About Qid"

FONT 8, "MS Sans Serif"

BEGIN

ICCN imjMAINFFAME,IDCJ^TATrC,ll,17,20,20

LTEXT "Gnd Version 1.0", ICC_STATIC, 40, 10, 119,

8

LTBCT "Copyright Jens Bartschat\251 1995",irr_STATTC,40,25,119, 8

DEFPUSHBUTICN "CK",IDCK, 176,6,32, 14, WS_GRCOP

END

IDDJCHJSCRIPTS DIALOG 18, 18, 397, 249

STYLE WS_CHLLD

FONT 8, "MS Sans Serif"

{

CONTROL "%ssHList", IDC_SCRIPr_LISTSCRIPT, "HList", HLS_BCRDER3D
I
HLSJCNIMHEIGHr | WS_CHILD | WSJVISIBLE

|

WS_TABSTOP, 6,62,161,161

CONTROL "333;Nonral Editing;HRl:HR2:HR3:HR2", irr_SOU:PT_NORMALEDrT, "HButt", HBS_RADI03UTTCN | HBSJTRANSPARENT
I

HBS_LJUST | HBSJXWNPICS | HE£J£TIOADVANCE
I
HBSJCBUrTCN

|
WS_CHILD 1 WSJVISIBLE |

WS_TABST0P, 12,10, 56,12

CONTROL "333;Express Editing;HRl:HR2:HR3:HR2", IDC_SCRIFT_EXPRESSEDIT, "HButt", HBS_RADICBUTTCN | HBSJTRANSPARENT |

HBS_LJaST | HBSJXWNPICS | HBS_AOTOADVANCE
I
HBSJNCBDTTCN | WSJHLLD

I
WSJVISIBLE

I
WS_TABSTOP, 12,24, 58,12

CCNTROL "HStat", IDC_STATIC, "HStat", HSS_FPAME
|
HSS_EUyiP | HSSJTRANSPARENT |

WS_CHILD
I
WS_VISTRLE, 6,7,68,32

CCNTROL "433;Script;HRl:HR2:HR3:HR2", IDC_SCRIPT_SCRIPT, "HButt", HBS_RADIOBUTTCN | HBSJTRANSPARENT
I
HBS_LJUST

|

HBSJXWNPICS | HBSJUJIOADVANCE | HBSJJOBUTTON
I
WSJCHTLD | WSJVISIBLE

I
WS_TABSTOP, 85,10,38,12

CCNTROL "433;Macro;HRl:HR2:HR3:HR2", IDC_SCRIPT_MaCRO, "HButt", HBS_RADICBJ[TCN | HBSJTRANSPARENT | HBS_LJUST |

HBSJXWNPICS
I
HBSjyjTOADVANCE | HBS_NCBOTTON

|
WS_CHLLD

| WSJVISTRTF,
I
WSJTABSTOP, 85,24,39,12

OONTROL "HStat", IEC_STAnC, "HStat", HSSJFRAME |
HSS_BUMP

I

HSS_LEFT
I
HSSJTRANSPARENT | WSJHTLD I

WSJVISIBLE,

78,7,44,32

CONTROL "441;Insert fran Edit Line;", IDC_SCRIPT_INSERrEL, "HButt", HBSJJUST | WSJHTLD | WSJVISTRTF, | WSJTABSTOP,

6,229,69,14

CCNTROL "441;Cut to Edit Line;", IXJSCRIPTJXrTTOEL, "HButt", HBS_RJUST | WSJHTLD |
WS_VISIBLE

| WSJTABSTOP,

98,229,69,14

OONTROL "441; Insert;", IDC_SCRIPT_rNSERT, "HButt", HBSJJUST I
WSJHTLD | WSJVISTRTF,

I
WSJTABSTOP, 191,229,37,14

CONTROL "441;Edit;", IDC_SCRIPT_EDIT, "HButt", HBSJRJUST
I
WSJHTLD |

WS_VISTBTF,
| WSJTABSTOP, 250,229,37,14

CONTROL "%ssHList", IDCJXRIPTJJSTCMD, "HList", HLS_BORDER3D
I
HLSJNCOTNTHEIGHT | WSJHTLD |

WSJVISIBLE
I

WSJTABSTOP, 191,62,96,161

CCNTROL "%sspurge_stored_telertBtry", IDCJSCRIPTJDrrCMD, "HEdit_SS", HES_AUTCHSCROLL
I
HESJ60RDER3D | WSJHTLD

|

WSJ/ISIBLE
I
WSJTABSTOP, 6,47,86,12

CONTROL "441;Erase Edit Line;", ITXJSCRIPTJEASELINE, "HButt", WSJHTLD |
WSJVISIBLE

I
WSJTABSTOP, 293, 47, 52, 12

129

www.manaraa.com

CCNTRCL "441;Load. ..;", ICC_SCRIPr_LCAD, "HButt", HBS_LJUST | WS_CHILD
|
WS_V1SIBLE

| WSJTABSTOP, 325, 80, 50, 14

CONTROL "441;Save;", IDCJ3CRIPT_SAVE, "HButt", HBS_LJUST
I
WS_CHILD

I
WS_VISIBLE | WSjrABSTOP, 325, 109, 50, 14

CONTROL "441;Save As...;", IDC_SCRIPT_SAVEAS, "HButt", HBS_LJUSr
I
WS_CHILD

| WSJTSTRTF | WSJTABSTOP, 325, 138,

50, 14

CONTROL "441;New;", IDC_SCRIPT_NEW, "HButt", HBS_LJUST
I
WS_CHILD

I
WS_VISIBLE

| WSjrABSTOP, 325, 167, 50, 14

CONTROL "441; Delete;", IDCJSCRIPTJDELETE, "HButt", HBSJLJUST |
WS_CHILD

I
WS_VISIBLE

I
WSJTABSTOP, 325,209,50,14

CONTROL "%ssHEdit_SS", IDC_SCRIPT_P, "HEdit_SS", HES_AUTCHSCPOLL |
HES_BORDER3D

| HES_READONLY | WS_CHIID
|

WS_VISIBLE | WSJTABSTOP, 94, 47, 193, 12

}

IDDJGHJOGNTROL DIALOG DISCARDABLE 18, 18, 397, 249

STYLE WSjCHTLD

HXT 8, "MS Sans Serif"

BEGIN

"RF System", IDC_STATTC, "HStat", 0x251, 94, 7, 110, 167

"Receiver", IDCJSTATTC, "HStat", 0x211, 98, 22, 49, 75

"Transmitter", IDC STATIC, "HStat", 0x211, 151, 22, 49, 75

CONTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTRDL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

CCNTROL

"441;Mix\n#5; ",7000, "HButt", WSJGRCUP | 0xc86, 102,41,21, 22

"441;Mix\n#6; ", 7001, "HButt", 0xc86, 122, 41, 21, 22

"441;Mix\n#5;", 7002, "HButt", WSJGRCUP I
0xc86, 155,41,21, 22

"441;Mrx\n#6; ", 7003, "HButt", 0xc86, 175, 41, 21, 22

"441;IKA\n#l;", 7004, "HButt", WSJGRCUP | 0xc86, 102,71,21, 22

"441; INA\n#2; ",7005, "HButt", 0xc86, 122, 71, 21, 22

"441;HPA\n#3;", 7006, "HButt",WSJGRCUP I
0xc86, 155,71,21, 22

"441;HPA\n#4; ", 7007, "HButt", 0xc86, 175, 71, 21, 22

"Power Level: ", IDCJSTATTC, "HStat", 0x240, 102, 107, 41, 12

"", 7008, "HSpin", WSJTABSTOP
I
0x280,145,106,29,12

"dB", irXJSTAnC, "HStat", 0x240, 178, 107, 13, 12

"441;Spread\nSpectrum;", 7009, "HButt",WSJGRCUP I
0xc86, 102,144,47,22

"441;Binary PhaseXnKey Shifting; ",7010, "HButt", 0xc86, 148, 144,48,22

"A", irXJSTATTC, "HStat", 0x211, 212, 22, 50, 64

"B", IDC_STAnC, "HStat", 0x211, 266, 22, 50, 64

"441;Charge;", 7013, "HButt", WSJGRCUP
I
0xca6,216,41,42,14

"441; Discharge; ", 7014, "HButt", 0xc86,216, 54, 42, 14

"441;Offline; ",7015, "HButt", 0xc86, 216, 67, 42, 14

"441;Charge; ",7016, "HButt", WSJGRCUP
I
0xca6,270,41,42,14

"441;Discharge; ", 7017, "HButt", 0xc86, 270, 54, 42, 14

"441;Offline; ", 7018, "HButt", 0xc86, 270, 67, 42, 14

"441;Read; ", 7019, "HButt", WSJTABSTOP, 99, 197, 45, 14

"441;Set; ", 7020, "HButt", WSJIABSTOP, 154, 197, 45, 14

"PANSAT Clock", IDC_STATIC, "HStat", 0x251, 94, 177, 110, 67

"Batteries", IDCJSTATIC, "HStat", 0x251,208, 7, 112, 83

•Transmit Mode", IDCJSTATIC, "HStat", 0x211, 98, 125, 102, 45

"Watchdog", irXJSTATTC, "HStat", 0x251,208, 94, 112, 80

"441,-Reset; ", 7021, "HButt", WSJTABSTOP, 214, 141, 45, 28

"441; Stop; ", 7022, "HButt",WSJTABSTOP, 269, 141, 45, 28

"333;DCS #1;HR1:HR2:HR3:HR2", 7023, "HButt", WS TABSTOP
I
0xlc33,218,109,50,12

130

www.manaraa.com

CCNTROL "333;DCS #2;HR1 :HK:HR3:HP2", 7024, "HButt", WSJIABSTOP | 0xlc33,218,123,50,12

CCNTRX "%aqhh:irm:ss Ddd, Mtm dd,yy", 7025, "HBdit_SS", 0x201, 99, 222,101,15

CCNTRX "441;Cn;", 7029, "HButt", WSJ5O0P | 0xc86,43,25,21,22

CCNTRX "441;Off ; ",7030, "HButt", 0xc86, 63, 25, 21, 22

CCNTRX "441;Cn;", 7031, "HButt", WSJGRDUP | 0xc86, 43, 55, 21, 22

CCNTRX "441;Off;",7032,"HButt",0xc86,63,55,21,22

CCNTRDL "441;Cn; ",7033, "HButt", WSJGRDUP | 0xc86,43,85,21,22

CCNTRDL "441;Off;",7034,"HButt",0xc86,63,85,21,22

CCNTRDL "441;Cn;", 7035, "HButt", WSJGRDUP | 0xc86,43,115,21,22

CCNTRDL "441;Off; ",7036, "HButt", Oxca6, 63, 115,21,22

CCNTRDL "441;Cn; ", 7037, "HButt", WSJGRDUP | 0xc86,43,145,21,22

CCNTRDL "441;Off;",7038,"HButt",0xc86,63,145,21,22

CCNTROL "RF: ", IDCJSTATTC, "HStat", 0x280, 19, 31, 21, 12

CCNTRDL "MUX A: ", IDC_STAITC, "HStat", 0x280, 15, 61, 25, 12

CCNTRDL "MUX B:",IDCJSTATTC, "HStat", 0x280, 15,91,25,12

CCNTRDL "MStor A: ", IDC_STATIC, "HStat", 0x280, 10, 121, 30, 12

CCNTRDL "MStor B:",IDC_STATIC, "HStat", 0x280, 12,151,28,12

CCNTRDL "HStat", IDC_STATIC, "HStat", 0x212, 10, 142, 76, 28

CCNTRDL "HStat", IDC_STATIC, "HStat", 0x212, 10, 22, 76, 28

CCNTRDL "HStat", IDCJSTATTC, "HStat", 0x212, 10, 52, 76, 28

CCNTRDL "HStat", IDC_STATIC, "HStat", 0x212, 10, 82, 76,28

CCNTRDL "HStat", IDC_STATIC, "HStat", 0x212, 10, 112, 76, 28

CCNTRDL "Power Switches", IDC_STATIC, "HStat", 0x251, 6, 7, 84, 167

CCNTRDL "SODS Parameters", IDC_STATIC, "HStat", 0x251, 6, 177, 84, 67

CCNTRDL "441;Read; ", 7040, "HButt", WSJTABSTOP, 23, 197, 50, 14

CCNTRDL "441;Update; ", 7041, "HButt", WS_TABSTOP, 23, 220, 50, 14

CCNTROL "Warm Boot DCS", IDC_STATIC, "HStat", 0x251, 323, 94, 68, 80

CCNTRDL "333;DCS #1;HR1:HR2:HP3:HR2", 7042, "HButt", WS_TABSTOP
|
0xlc33,340,109,36, 12

CCNTRDL "333;DCS #2;HR1:HR2:HR3:HB2", 7043, "HButt",WSJTABSTOP
I
0xlc33,340,123,35, 12

CCNTROL "441;ROM\nBcot; ",7044, "HButt", WSJTABSTOP, 335, 141, 45, 28

CCNTRX "Temperature MUX", 7011, "HStat", 0x251, 323, 7, 68, 83

CCNTRDL "PeripheralXnControl Bus", IDCSTATIC, "HStat", 0x251, 323, 177,68,67

CCNTRDL "441; Init;", 7026, "HButt", WS TABSTOP,335,211,45,28

END

IDDJMAIN DIALOG DISCARDABLE 42, 27, 441, 311

STYLE DS_MOCALFPAME | WS_MTNIMIZEBOX | WS_POPUP
I
WSJvTSIBLE

I
WS_CAPTICN

CAPTICN "Main Dialog"

FONT 8, "MS Sans Serif"

BEGIN

OCNTRDL "%kTnh:rtm:ss Ddd, Mm dd,yy",IDCJSYSTEMJTIME,"HEditJ3S", 0x201,102,289,101,15

CCNTRDL "%tihh:rrm:ss", IDC_STOPWATCH, "HEditJSS",WSJTABSTOP [
0x281,214,289,48,15

PUSHBUTTCN "", IDCJSTATTC, 0, 0, 400, 265, NOT WSJTABSTOP

CCNTRDL " [DkRed] ; [64, 0,0],-HStat", IDCJSESD, "HStat", 0x22, 39, 272, 26, 14

CCNTRDL "[DkBlue];[0,0,64];HStot",IDCJ^CETVE,
,

'HStat",0x22,39, 291,26,14

CCNTROL "Send", 106, "HStat", 0x280, 4, 274, 30, 12

CCNTROL "Receive", 107, "HStat", 0x280, 4, 293, 30, 12

131

www.manaraa.com

CCNTFOL "System Time && Date:", IDC_STATIC, "HStat", 0x240, 102, 275, 69,12

CONTROL "444;St^rt;",Iir_STRFT_STOPHATCH,"HButt",WS_TABSTOP,214, 272,21,14

CONTROL "441;Pause;",IIX_PAUSE_ST0PWRTCH,"HButt",WS_C3OUP
I

0xc86,239,272,23,14

CCNTFOL "441;0; ", IDCJMACRQJO, "HButt",WS_TABSTOP, 400, 0, 41, 15

CONTROL "441; 1; ", IDCJMACROJ., "HButt", WSJTABSTOP, 400, 15, 41, 15

CONTROL "441;2; ", IDC_MACBD_2, "HButt",WS_TABSTOP, 400, 30, 41, 15

CONTROL "441; 3; ", IDC_MACRD_3, "HButt",WS_TAESTOP, 400, 45, 41, 15

CCNTFOL "441; 4; ", IDCJMACRO_4, "HButt",WS_TABSTOP, 400, 60, 41, 15

CONTROL "441;5; ", IDCJMACFOJ5, "HButt",WS_TABSTOP, 400, 75, 41, 15

CCNTRX "441; 6; ", IDCJfflCRD_6, "HButt", WSJIABSTOP, 400, 90, 41, 15

CONTROL "441;7; ", IDCJMACRQJ7, "HButt", WSJTABSTOP, 400, 105, 41, 15

CCNTFOL "441; 8; ", IDCJMACRO_8, "HButt", WSJIABSTOP, 400, 120, 41, 15

CCNTFOL "441; 9; ", IDC_MACRO_9, "HButt", WSJTABSTOP, 400, 135, 41, 15

CCNTFOL "441; 10; ", irXJMACRO_10, "HButt", WSJTABSTOP, 400, 150, 41, 15

CCNTFOL "441; 11; ", IECJBCRDll, "HButt", WSJTABSTOP, 400, 165, 41, 15

CCNTFOL "441; 12; ", IDCJMACRQ_T2, "HButt", WSJEABSTOP, 400, 180, 41, 15

CCNTFOL "441; 13; ", ICC_MACFO_13, "HButt", WSJTABSTOP, 400, 195, 41, 15

CCNTFOL "441; 14; ", IDC_MACFO_14, "HButt", WSJTABSTOP, 400, 210, 41, 15

CCNTFOL "441; 15; ", IDCJMACROJ.5, "HButt", WSJEABSTOP, 400, 225, 41, 15

CCNrPOL "441;... ;",irOJMACRO_NEXT, "HButt", WSJTABSTOP, 400, 240, 41, 25

CCNTFOL "%84%ss%SS",irrjDOyBOJJSEPJjCG,"HCatb",WSJTABSTOP | 0x111, 285,292,150,12

CCNTFOL "log:", ICCJSTATIC, "HStat", 0x240, 285, 275, 16, 12

CCNTFOL "441;PCL;",IIX_LCG_PCL,' ,HButt",WSj30UP | 0xc86,323,273, 23,14

CCNTFOL "441;User; ", IDCJJCGJJSER, "HButt", 0xc86, 345, 273, 23, 14

CCNTFOL "441;iyCL; ", IDC LOG mCPO, "HButt", 0xc86, 367, 273, 23, 14

Eld

IDDJCHJIELEMBTRY DIALOG DISCARDABLE 18, 18, 397, 249

STYLE WSJCHLLD |
WS_BORDER

FCNT 8, "MS Sans Serif"

BEGIN

END

IDDJ3JOSCCNTFOL

STYLE WSJCHLLD

FONT 8, "MS Sans

BEGIN

CCNTFOL

CCNTFOL

CCNTFOL

CCNTFOL

CCNTFOL

CCNTFOL

CCNTFOL

CCNTFOL

CCNTFOL

CCNTFOL

DIALOG DISCARDABLE 18, 18, 397, 249

Serif"

"User control, hahahaa!",IDCJSTATIC, "HStat", 0x262,7, 6, 129,47

"333;Drcp && Lcckout;HRl:HR2:HR3:HR2", 8000, "HButt", WSJCABSTOP | 0xlc33, 66, 10, 66, 12

"333;Lockout;HR1:HR2:HR3:HR2", 8001, "HButt",WSJTABSTOP I
0xlc33,66,24,66,12

"333;Unlcck;HRl:HR2:HR3:HR2", 8002, "HButt",WSJTABSTOP | 0xlc33,66,38,66,12

"Foreign Users :

", ICCJSTATIC, "HStat", 0x240, 13, 11, 48, 12

"EVEOTIOG",8003,"HGrid",WS_BORDER | WSJVSCHXL | WSJTABSTOP | 0x2b81,7,78,183,136

"Event Log", IDC_STATIC, "HStat", 0x240, 7, 63, 37, 12

"441;Read; ",8004, "HButt", WSJTABSTOP, 31, 224, 50, 14

"441;Purge All; ", 8005, "HButt", WS_TABSTOP, 112, 224, 50, 14

"%sshh:ran:ss ap Ddd, Mtm dd,yy",8006,"HEdit_SS", WSJEABSTOP
I
0x280,94,62,96,12

132

www.manaraa.com

OCNTRDL "Start : ",8007, "HStat", 0x240, 75, 63, 20, 12

CCNTRDL "441;Add. . . ; ",8008, "HButt",WS_TABSTOP,215,224, 36, 14

CONTROL "441;Dslete; ", 8009, "HEutt", WSJTABSTOP, 258, 224, 36, 14

CCNTRDL "441; List;", 8010, "HButt", WS_TABSTOP, 301,224, 36, 14

CONTROL "441;Purge All;", 8011, "HButt", WSJTABSTOP | 0x20,344,224, 36,14

CCNTRDL "TIMETAG",8020,"HGrid",WSJBCPDER
|
WSJ/SCPDLL

| WSJTABSTOP
I
0x2b81,206,78, 183, 136

CCNTRDL "Tine-Tagged Cantands", IDC_STATIC, "HStat", 0x240, 206, 63, 84, 12

END

IDD_CH_MAIL DIALOG DISCARDABLE 18, 18, 397, 249

STYLE WSJCHTLD

FCNT 8, "MS Sans Serif"

BEGIN

CCNTROL "PANSAT Mail Directory: ",ICC_STATIC, "HStat", 0x240, 6, 81, 77,12

CCNTRDL "%ssHUst",IDCJMAILJJSTMAIL, "HList", WSJTABSTOP | 0x10,6, 96,91,147

CCNTRDL "%ssHList",irrj^!AILJ^STMAILFI^
I
0x110,202,23,189,220

CCNTRDL "%ssHE±Lt_SS",irrjyiAELjyFaiFri£NAME,"HEait_SS'', WSJTABSTOP | 0x2280,202,6,91,12

CCNTRDL "441;Get Directory; ", IDCJMAILJGEIDIR, "HButt", WSJTABSTOP |
0x20,115,119,55,14

CCNTRDL "441;Get ^feil;",I^XJ^yffflJ_PEA^yEG,"HButt",WSJTABSTOP | 0x20,115,96,55,14

CCNTRDL "441;Add Mail;", IDCjyMX_ADCMSG, "HButt", WSJTABSTOP 1 0x20,115,229,55,14

CCNTRDL "441,-Dalete ^fen;",IDCJMAILJDEIiylSG,
,'HEutt",WSJIABSTOP | 0x20,115,163,55,14

CCNTRDL "441;Purge All Man; ",ILrjMATTJUFGEMSG, "HButt", WSJTABSTOP | 0x20,115,186,55,14

CCNTRDL "HEdit_SS",IDCjmiL_ERCM,"HEait_SS",WSjrABSTOP
I
0x280, 36,6,141,12

CCNTRDL "HEriLt_SS",irrj«AIL_TO,"HEdit_SS",WSJTABSTOP
I
0x280,36, 22,141,12

CCNTRDL "%tlrrm/dd/yy hh:nm ap",IDCJMAIXjnME,"HEdit_SS", WS_TABSTOP | 0x280,36,38,62,12

CCNTRDL "HEoit_SS",irrjMArLJSUECE)CT,"HEat_SS",WSJIABSTOP
I
0x280,36,54,141,12

CCNTRDL "Fran: ", IDCJSTATIC, "HStat", 0x280, 6, 7, 26, 12

CCNTRDL "To: ",IDC_STATIC, "HStat", 0x280, 6,23,26,12

CCNTRDL "Date
:

", IDCJSTATIC, "HStat", 0x280, 6, 39, 26, 12

CCNTRDL "Subject: ", IDCJSTATTC, "HStat", 0x280, 6, 55, 26, 12

END

IDDJCHMEMCRY DIALOG DISCARDABLE 18, 18, 397, 249

STYLE WSJCHILD I
WS_BCRDER

FCNT 8, "MS Sans Serif"

BEGIN

"HStat", IDCJSTATTC, "HStat", 0x262, 93, 7, 112, 40

"333;RAM;HPl:HP2:HR3:HR2",9000,"HButt",WS_GPCUP
I
WSJTABSTOP

I
0xlc33,135,13,27,12

"333;RDM;HB1:HP2:HR3:HP2", 9001, "HButt", WSJTABSTOP
I
0xlc33,135,30,26,12

"333;SRAM;HRl:HR2:HR3:HR2",9002,"HButt",WS_TABSTOP I
0xlc33,170,13,31,12

"333;FLASH;HR1:HR2:HR3:HR2", 9004, "HButt", WSJTABSTOP I
0xlc33,170,30,32,12

"HStat", IDC STATIC, "HStat", 0x262,209, 7, 174, 40

CCNTRDL

CCNTRDL

CCNTRDL

CCNTRDL

CCNTRDL

CCNTRDL

CCNTRDL

CCNTRDL

CCNTRDL

CCNTRDL

CCNTFQL

"441;Mass\nA

"441;Mass\nB

"441;AMUX\nA

"441;AMUAnB

",9010, "HButt",WSJGRDUP
I

0xc86,215,13,28, 28

",9011,"HButt",Oxc86,242,13,28,28

", 9012, "HButt", 0xc86, 269, 13, 28, 28

", 9013, "HButt", 0xc86, 296, 13,28,28

,,441;EP3; ", 9014, "HButt", 0xc86, 323, 13, 28,

;

133

www.manaraa.com

CONTROL "441;RF\nSystem;",9015,"HButt",Oxc86,350,13,28,28

CCNTPOL "HStat", IDC_STATIC, "HStat", 0x262, 6, 7, 83, 40

CONTROL "333;20-Bit;HW:HP2:HR3:HR2", 9020, "HButt", WSJGROUP I
WSJTABSTOP

I
0xlc33, 50, 13, 35, 12

CONTROL "333;Seg:Off;HRl:HR2:HR3:HR2", 9021, "HButt", WSJTABSTOP | 0xlc33,50,30,37,12

CCNTRDL "Memory: ", IDCJSTATIC, "HStat", 0x240, 99, 14, 28, 12

CONTROL "Address
:

", 104, "HStat", 0x240, 12, 14, 30, 12

CONTROL 'MFMEDIT",9040,"HGrid",WS_BORDER | WS_VSCROLL
I
WSJTABSTOP | 0x490a, 6, 67,261,176

CONTROL "441;Eolt;", 9050, "HButt", WSJGRCUP | 0xc86,309,68,28,28

CONTROL "441;View; ", 9051, "HButt", 0xc86, 336, 68, 28, 28

CONTROL "Memory Block", IDCJSTATIC, "HStat", 0x240, 6, 55, 50, 12

CONTROL "441;Write\nModified\nBytes;", 9062, "HButt", WSJTABSTOP, 277,210,50,33

CONTROL "%nu|0|", 107, "HBdit_SS", WSJTABSTOP
I
0x2280,285,125,50,12

CCNTRDL "Bytes modified:", IDC_STATTC, "HStat", 0x240,285,113, 50, 12

CCNTRDL "Bytes written: ", IDCJSTATIC, "HStat", 0x240, 285, 153, 50, 12

CCNTROL "%nu| 01", 105, "HBdit_SS",WSJTABSTOP I
0x2280,285,165,50,12

CCNTROL "441;Cancel; ", 106, "HButt", WSJTABSTOP, 339, 124, 50, 14

CCNTROL "441;Reset;", 108, "HButt", WSJTABSTOP |
0x20,339,164,50,14

CCNTRDL "441;Re-Read\nVisiMe\nBlock;", 9063, "HButt", WS TABSTOP,338,210,50,33

END

IDD_CH_FT1£SYSTEM DIALOG DISCARDABLE 18, 18, 397, 249

STYLE WSJCHTLD

FONT 8, "MS Sans Serif"

BEGIN

CCNTROL "PANSAT File Directory: ",IDC_STATIC, "HStat", 0x240, 7, 6, 77, 12

CCNTRDL "%ssHIist",IDC_FII£JLJSTFII£,"HList",WSJIABSTOP
I
0xal0,7,20,91,222

CCNTRDL "441;Read Directory;", IDC_FTLEJGETDIR, "HButt", WSJTABSTOP | 0x20,116,118,55,14

CCNTPOL "441;Read Fne;",irXJFILE_READFTLE, "HButt", WSJTABSTOP
I
0x20,116,95,55,14

CCNTPOL "441;Write Eile; ", IIC_FILE_ADDFTLE, "HButt",WSJTABSTOP | 0x20,116,228,55,14

CCNTROL "441;Eelete File;", IDC_FTLE_DELFILE, "HButt", WSJTABSTOP 1 0x20,116,162,55,14

CCNTROL "441;Purge All Fnes;",IDC_FILE_PUPGEFILE, "HButt", WSJTABSTOP
I
0x20,116,185,55,14

CCNTRDL "Selected File (s) :", IDCJSTATIC, "HStat", 0x240, 201, 6, 77, 12

CCNTRDL "%ssHlJ.st",IDC_FILEJ3EIHnTTLE,' ,HList",WSJTABSTOP
I
0xal0,201,36,91,206

CCNTRDL "HConto",IDC_ETLE_SEIJECTCCMBO,'^Conb",WSJI?BSTO
I
0x119, 201,20,91,12

END

IDDJCHJTASKCCNrRDL DIALOG DISCARDABLE 18, 18, 397, 249

STYLE WSJCHELD

FCNT 8, "MS Sans Serif"

BEGIN

CONTROL ,'TASKCT",irrjI^Kj3PJrTRSK,"HGrid",WS_BCRDER | WSJVSCROLL | WSJTABSTOP
I
0x2988,6,77,150,166

CCNTRDL "Add means. . .", IDCJSTATIC, "HStat", 0x262, 6,7, 129, 47

CCNTPOL "333;Add && Start Task && Get List;HRl:HR2:HR3:HP2",

irrjrASKJRADIOAOTO, "HButt", WSJTABSTOP I
0xlc33, 36, 11, 97, 12

CCNTPOL "333;Add && Get Ust;HRl:HR2:HP3:HP2",IDCjrASK_RADIQLIST, "HButt", WSJTABSTOP | 0xlc33,36,25,97,12

CCNTPOL "333;Add;HRl:HR2:HR3:HR2",irCjmSK_RADIOADD, "HButt", WSJTRBSTOP
I
0xlc33,36,39,97,12

CCNrRDL "Add:", IDC STATIC, "HStat", 0x240, 12, 12, 16,12

134

www.manaraa.com

CONTROL "441;Add; ", IDC_TASK_ADD, "HButt", WSJTABSTOP, 164, 77, 69,14

CONTROL "441;Delete Task; ", IDC_TASK_DELETE, "HButt", WSJTABSTOP, 164, 229, 50, 14

CONTROL "441;Get Tasklist; ", IDCJIASK_GETLIST, "HButt", WSJTABSTOP, 164, 150, 50, 14

CCNTRDL "TASKLST'%IirjmSKj3aDFTLES,"HGrid'',WS_B0RDER
| WS_VSCROLL

| WSJTABSTOP
| 0x2988,242,97,99,146

CONTROL "%ssHEait_SS",IDCJIASKJEDnTTLE, "HEditJSS" , WSJTABSTOP
I
0x280,242,77,99,14

CCNTFOL "441;Load. - -

;
", IDC_TASK_LCAD, "HButt", WSJTABSTOP, 349, 97, 41, 14

CCNTRDL "PANSAT Task List", IDCJSTATTC, "HStat", 0x240, 8, 63, 63, 12

CCNTRDL "Available Task(s) ",IDC_STATIC, "HStat", 0x240,242, 63, 62,12

END

IDD_PREF£RENCES DIALOG DISCARDABLE 0, 0, 186, 173

STYLE DS_MODALFPAME | WS_POPUP
| WS_VISIBLE

| WSJCAPTICN | WS_SYSMENU

CAPTTCN "Preferences"

FONT 8, "MS Sans Serif"

BEGIN

DEFPUSHBUTTCN "OK",IDOK,15,148,50,14

PUSHBOTTCN "Cancel", 103*01,115, 148,50, 14

EDTTTEXT IDC_EDIT1, 64, 15, 112, 13, ES_AUTOHSCROLL

EDITTEXT IDC_EDrT2, 64, 31, 112, 13, ES_AOTCHSCROLL

EDITTEXT IDC_EDIT3,64,47,112,13,ES_AOTOHSCROLL

EDITTEXT IDC_EDTT4, 64, 63, 112, 13, ES_AUTOHSCROLL

EDITTEXT IDC_EDIT5, 64,79,112, 13, ES_AUTOHSCROLL

EDnTEXT IDC_EDIT6, 64, 95, 112, 13, ES_AUTCHSCROLL

EDITTEXT irrjEDIT7,64,lll,112,13,ESjUJTCHSCRDLL

RTEXT "Scripts:",IDC_STATIC,8,18,51,13

RTEXT "Macros:",IDC_STAnC,8,34,51,13

RTEXT "Telemetry Data: ", IDCJSTATTC, 8, 50, 51, 13

RTEXT "User Log:",ICC_STAnC,8,66,51,13

RTEXT "Task List:",IDC_STAnC,8,82,51,13

RTEXT "IN Data:",IDC_STAnC,8,98,51,13

RTEXT "CUT Data:",IDC_STAnC,8,114,51,13

GRCUPBCK "Directory Settings", IDC_STAnC, 5, 1, 176, 137

END

IDDJJSERLCGIN DIALOG DISCARDABLE 18, 18, 142, 92

STYLE DSJCDALERAME | WSJPOFUP | WSJCAPTICN

CAPTTCN "PANSAT Groundstation User Login"

BEGIN

CCNTRDL "%ssjbartschat",nrjjD3TOJXGW I
0x280,56,28,77,12

CCNTRDL "%ss",irX:jnimj)ASSWCRD,"HEdit_SS",VB_TABSTOP
I
0x280,56,46,77,12

CCNTRDL "441;Ok;",IDOK,"HButt",WS_TABSTOP
I
0x1,13,70,50,14

CCNTRDL "441;Cancel;",IDCANCEL, "HButt", WSJTABSTOP [0x20,78,70,50,14

CONTROL "Login: ", IDC_STATIC, "HStat", 0x240, 14,29, 40, 12

CONTROL "Password: ", IDC_STAnC, "HStat", 0x240, 14, 48, 36, 12

CCNTRDL "Please enter your login and password", IDC_STATTC, "HStat", 0x240, 10, 10, 125,12

END

135

www.manaraa.com

///

//

// Version

//

VSJVERSION_TNFO VERSIONTNEO

FLLEVERSICN 1,0,0,1

PFOXICTVERSICN 1,0,0,1

FTLEFLAGSMASK 0x3fL

#ifdef _DEBUG

FTLEFLAGS OxlL

#else

FTLEFLAGS OxOL

#endif

FTLE03 0x4L

FLLETYPE OxlL

FTLESUBTYPE OxOL

BEGIN

BLOCK "StringFilelnfo"

BEGIN

BLOCK "040904b0"

BEGIN

VALUE "CaipanyName", "NPS SSAG (German branch) \0"

VALUE "FUeDescripticn", "PANSAT Groundstation\0"

VALUE "FileVersicn", "1, 0, 0, 1\0"

VALUE "IntemalName", "GND\0"

VALUE "LegalCcpyright", "Copyright \251 1995 Jens Bartschat\0"

VALUE "OrigiralFilenare", "GND.EXE\0"

VALUE "ProductName", "PANSAT GroundstationXO"

VALUE "Productversion", "1, 0, 0, 1\0"

END

END

BLOCK 'VarFilelnfo"

BEGIN

VALUE "Translation", 0x409, 1200

END

END

///

//

// String Table

//

STRINGTABLE PRELOAD DISCARDABLE

BEGTN

136

www.manaraa.com

IDRJ4AINFRAME "PANSAT Groundstation\n GroundstationXn Groundstation Dccumant\n\n\n

Groundstaticn. Document\n Groundstation Document"

END

STRXNGTABLE PRELOAD DISCARDABLE

BEGIN

AEX_IDS_APP_TITLE "PANSAT Groundstation"

AFX_ID5_IDLEMESSAGE "Ready"

END

STRINGTABLE DISCARDABLE

BEGIN

IDJNDICATCR_EXT

IDJNDICAJCR_CAPS

ID_INDICATCR_NUM

ID_INDICATCR_SCRL

ID_INDICATCR_CVR

ID_INDICATCR_REC

END

STRINGTABLE DISCARDABLE

BEGIN

ID_FLLE_NEW

ID_FLLE_OPEN

ID_FILE_CLCSE

ID_FILE_SAVE

ID_FH£_SAVE_AS

ID_FLLE_PAGE_SETUP

ID_ETLE_PRINT_SETUP

ID_FTLE_PRINr

ID_FILE_PRINT_PREVIEW

END

"EXT"

"CAP"

"NUM"

"SCRL"

"CVR"

"REC"

"Create a new document\nNew"

"Open an existing documentXnCpen"

"Close the active documentVClose"

"Save the active dccument\nSave"

"Save the active document with a new narreViSave As"

"Change the printing options\nPage Setup"

"Change the printer and printing options\nPrint Setup"

"Print the active document\nPrint"

"Display full pages\nPrint Preview"

STRINGIABLE DISCARDABLE

BEGIN

ip_APP_ABCOr

ID_APP_EXXT

END

"Display program information, version number and copyright\nAbout"

"Quit the application; prompts to save documentsXnExit"

STRINGIABLE DISCARDABLE

BEGIN

ID_FTI£_MRD_FTLE1

ro_FH£_MPU_FTTE?

ID_FTLE_MRD_FTT F3

ID_FTLE_MRU_FILE4

END

"Cpen this document"

"Cpen this document"

"Cpen this document"

"Cpen this document"

137

www.manaraa.com

STRTN3IABLE DISCARDABLE

BEGIN

IDJSEXT_PANE

ID_PREV_PANE

END

STPJNGIABLE DISCARDABLE

BEGIN

ID_WINDCW_SPLIT

END

STRINGTABLE DISCARDABLE

BEGIN

ID EDIT CLEAR

ID_EDITJ3JEAR_ALL

IDJDITCOPY

ID EDIT CUT

ID EDIT FIND

ID_EDIT_PASTE

ID EDIT REPEAT

ID EDIT REPLACE

ID_EDIT_SE3JECT_ALL

IDJDITJJNDO

ID EDIT REDO

END

STRINGTABLE DISCARDABLE

BEGIN

ID_VIEW_TCOLBAR

ID_VIEW_STATUS_BAR

"Switch to the next window paneXnNext Pane"

"Switch back to the previous window paneXnPrevious Pane"

"Split the active window into panesXnSplit"

"Erase the selection\nErase"

"Eiase everything\nErase All"

"Copy the selection and put it on the ClipboardXnCopy"

"Cut the selection and put it on the ClipboardXnCut"

"Find the specified textXnFind"

"Insert Clipboard contents\nPaste"

"Repeat the last actionXnRepeat"

"Replace specific text with different text\nReplace"

"Select the entire documentXnSelect All"

"Undo the last actionXnUndo"

"Redo the previously undone action\nRedo"

"Show or hide the toolbarXnToggle ToolBar"

"Show or hide the status barXnToggle StatusBar"

STRINGTABLE DISCARDABLE

BEGIN

AFX_IDS_SCSIZE

AFX_IDS_SOEVE

AFX_IDS_SCMINTMIZE

AFX_IDS_SCMA>aMIZE

AFX_IDS_SCNEXIWINDCW

AFX_IDS_SCPREVWTNDCW

AFX_IDS_SCCIC6E

END

"Change the window size"

"Change the window position"

"Reduce the window to an icon"

"Enlarge the window to full size"

"Switch to the next document window"

"Switch to the previous document window"

"Close the active window and prompts to save the documents"

STRINSTABLE DISCARDABLE

BEGIN

AFX_IDS_SCRESTCRE

AEX IDS SCTASKLIST

"Restore the window to normal size"

"Activate Task List"

138

www.manaraa.com

END

STRJNGTABLE DISCARDABLE

BEGIN

AFX_ID3_PREVIEW_CLCSE "Close print preview itcdeXnCancel Preview"

END

STRIN3IABLE DISCARDABLE

BEGIN

ID_ACCESS_LCGCN "Log on as a registered user"

ID_ACCESS_LCGOFF "Quit your user account"

ID_PREFERENCES "Set Directories"

END

#ifndef APSTUDIOJLWCKED

///

//

// Generated frcm the TEXTINCLUDE 3 resource.

//

#include "res\Gnd.rc2" // non-Microsoft Visual C++ edited resources

#define J^EXJO_SPUTIERJ^ESOURCES

tdefme JtfXJSDJXEJESOUBCES

ttdefine J^XJC)jrPACKER_RESOURCES

#define J^JSD_PR0EEKTYJRE5CUF€ES

#include "afxres.rc" // Standard corponents

#include "af>print . re" // printing/print preview resources

///

#endif // not APSTUDIO LWCKED

Resource.h

//{ {^JXPEMXNCIES}

}

// Microsoft Visual C++ generated include file.

// Used by GND.RC

//

#define IDD_ABCUTECK 100

#define IDR_MAINFRAME 128

#define IDD_USERLCGLN 129

#define IDDjaCGOTRCL 130

ttdefine IDD_CH_FTT ESYSTEM 131

#define IDD_CH_MAIL 132

#define IDD_CH_CSCCNTRDL 133

tdefine IDD_CH_SCRIKrS 134

define IDD CH TASKCCNTPCL 135

139

www.manaraa.com

#define IDDJHTELEMBTPi' 136

idefine IDD_CH_ME]VCey 137

idefine IDD_MRIN 140

#define IDD_PREFERQCES 141

#def±ne IDCJjOGINJjOGIN 500

#define IDC_L03IN_PASSWCeD 501

#define ICC_SYSTEM_TIME 900

#define IIX_STOPWATCH 901

#define ICC_STRKr_ST3PWATCH 902

#define IDC_PAUSE_STOEWRTCH 903

#de£ine IDC_SEND 997

#define IDC_RBCErVE 998

#define IDC_CCMBO_USERIj03 999

#define IDC_DOG_USER 1000

#defxne IDC_1D3_MACP0 1001

idefine IDCJJCGPCL 1002

#define IDC_MACRD_0 1050

#define IDC_MACRO_l 1051

#define IDC_MACPO_2 1052

#define IDCJffiCRD_3 1053

idefine IDC_MACBD_4 1054

#define IDCjyPCBD_5 1055

#define ICCJ®CBO_6 1056

#define IDC_MBCRO_7 1057

#define IDC_MaCRD_8 1058

#define IDC_MACTO_9 1059

idefine IDCJffiCBOJLO 1060

#define IDC_MACRO_ll 1061

Idefine IDC_MACPO_12 1062

idefine IDC_MACRD_13 1063

idefine irC_MACRD_14 1064

idefine IDC_MRCR0_15 1065

idefine IDC_MACPD_NEXT 1066

idefine IDC_EDIT1 1067

idefine IDCJEDIT2 1068

idefine IDC_EDIT3 1069

idefine IDC_EDIT4 1070

idefine IDCJEDIT5 1071

idefine IDC_EDIT6 1072

idefine IDC_EDIT7 1073

idefine IDC_SCRIPT_NCeyiALEDIT 2000

idefine IDC_SCRIPTJXPRESSEDIT 2001

idefine ICC_SCRIPT_SCRIPT 2002

idefine IDC_SCRIPT_MACBD 2003

idefine IDC_SCPO:PT_LISTSCK[PT 2004

idefine IDC_SCTO:PT_LISTCMD 2005

idefine ICC SCRIPT EDITCMD 2006

140

www.manaraa.com

#define IDC_SCRIFT_P

#define ICC_SCBIPr_ERASELIM:

#define IDCJaCRIPTJENSEFTEL

#define IDCj3CKEPr_CUITCEL

#define IDC_SCRIPr_INSEKr

#define IDC_SCRIFr_EDIT

#defrne IDCJSCRIPrjjOAD

#define IDC_SCRIPT_SAVE

#define ICC_SCRIPr_SAVEAS

#define IDC_SCRIPr_NHW

#define IEC_SCFaPr_DELErE

#define IDCJI7\SK_RADI0ADT0

#define IDC_TASK_PADIQLIST

#define IDC_TASK_RADICftDD

#define IDC_TASK_GRIDIASK

#define IDC_TASK_GKEDETLES

#define IDC_TASK_EDITFrLE

#define IDCJIBSKADD

#define IDCJIASKJETLIST

#define IDC_TASK_DELETE

#define irC_TASK_IORD

#define IDC_MMX_FraYI

idefine IDC_KRIL_TO

#define IDC_MAIL_TIM:

#defxne IDC_MAIL_SOBJBrr

#define ircjyMLjyMLFlLENSME

#define IDZJQJL_LLSM£1FILE

#define IDCJ<ML_LISIMiIL

#define IDC_MML_GETDIR

#define IIX:jML_REMMSG

#define IDCjyiAILADCMSG

#define IDCjywX_DELMSG

ttdefine IECJtfUXJURGEMSG

#define IDCJETLELISTFTLE

#define IDC_FTLE_GETDIR

#define IDC_FTI£_READFn£

#define IDC_FILE_ADDFTLE

#define IDC_FTL£_CELFILE

#define IDC_FILE_PUK5EFTLE

#define IDC_FILE_SELECrFILE

#define IDC_FH£_SELEnCOylEO

#de£ine ID_aCCESS_D3XN

#define IDJOCESSJXGOET

idefine ID_PREFEREtCES

idefine ID DEBUG I£AEMACRO

2007

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

5001

5002

5003

5004

5005

5006

50C7

5008

32771

32772

32773

32774

// Next default values for new objects

141

www.manaraa.com

//

iifdef APSTUDIO_INVOKED

#ifndef APSTUDI0_RE7yXNLY_SYMB0I£

idefine _APS_3D_COSrrRDLS 1

#define J^PSJCXT_FESOUPCE_VRLUE 139

idefine J^PSJffiXrjDCMMC)_VRLUE 32776

#define JiPSJCXTjXNTBDLVaLUE 5000

idefine JffiSJJEXr_S5fflJEDJffiDDE 101

#endif

iendif

Password.

h

// password, h : header file

//

///

// CPasswordDlg dialog

class CPasswordDlg : public CDialog

{

// Construction

public:

CPasswordDlg (CWnd* pParent = NULL); // standard constructor

// Dialog Data

// { {AEX_DAIA (CPasswordDlg)

enum { IDD = IDDJJSERLCGIN }

;

// NOTE: the ClassWizard will add data matters here

//}}AEX DATA

// Overrides

// ClassWizard generated virtual function overrides

// { {AEXVIKTUAL (CPasswordDlg)

protected:

virtual void DoDataExchange (CDataExchange* pDX) ; // DDX/DDV support

//} JAEXVIKTUAL

// Implementation

protected:

// Generated message map functions

// { fAEXJYEG (CPasswordDlg)

// NOTE: the ClassWizard will add member functions here

//}}AFX M3G

142

www.manaraa.com

DECLARE MESSAGE MAP(

Password.cpp

// password. cpp : implementation file

//

iinclude "stdafx.h"

#rnclude "gnd.h"

#include "password.h"

#ifdef JOEBUS

fandef THIS_ETLE

static char BASEDCCCE THIS_FILE[] = _FTLE_;

#endif

///

// CPasswordDlg dialog

CPasswordDlg: ^asswordDlgfCWnd* pParent /*=NULL*/)

: CDialog (CPasswordDlg: :IDD, pParent)

{

//{ {AEXJDATA_rNIT (CPasswordDlg)

// NOTE: the ClassWizard will add msrber initialization here

//}}AEX DATA TNTT

void CPasswordDlg: :DoDataExchange(CDataExchange* pDX)

{

CDialog: :DoDataExchange (pDX)

;

// { {AEX_DATA_MAP (CPasswordDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here

//} }AEX_DATA_MAP

}

BB3TN_MESSAG£_MAP (CPasswordDlg, CDialog)

// { {AEX_MSG_MAP (CPasswordDlg)

// NOTE: the ClassWizard will add message map macros here

//}}AEX_MSG MAP

END MESSAGE MAPO

14:

www.manaraa.com

///

// CPasswordDlg message handlers

PrefDlg.h

// prefdlg.h : header file

//

///

// CPrefDlg dialog

class CPrefDlg : public CDialog

{

// Construction

public:

CPrefDlg (CWnd* pParent = NULL) ; // standard constructor

// Dialog Data

struct PSNSATFilelnfo (*p01dPEI) [MAXDIKS] , NewPFI [MAXDIRS]

;

ECOL rnbHasChanged;

//{ {AEX_DAm (CPrefDlg)

enum { IDD = IDD_PREEERENCES } ;

// NOTE: the ClassWizard will add data members here

//}}AEX DATA

// Overrides

// ClassWizard generated virtual function overrides

// { {AEXVIKTURL (CPrefDlg)

protected:

virtual void DoDataExchange (CDataExchange* pDX) ; // DDX/DDV support

//}}ATC_VTKrUAL

// Implementation

protected:

// Generated message map functions

//{ {AEX_MSG (CPrefDlg)

virtual ECOL CnlnitDialog () ;

afxjnsg void OnChangeEditO;

virtual void CnCKO ;

//} }MXJBG

ibclabe_messpge:_map (

)

};

144

www.manaraa.com

PrefDIg.cpp

// prefdlg.cpp : implementation file

//

#include "stdafx.h"

#include "gnd.h"

#include "prefdlg.h"

#ifdef _DEBU3

frundef THIS_FTLE

static char BASEDJCCDE THIS_FTLE[] = _FILE_;

#endif

///

// CPrefDlg dialog

CPrefDlg: :CPrefDlg(CWnd* pParent /*=NULL*/)

: CDialog (CPrefDlg : :IDD, pParent)

{

// { {AFX_DAIA_INIT (CPrefDlg)

// NOTE: the ClassWizard will add member initialization here

//}}AFX DATA MIT

void CPrefDlg: : DoDataExchange (CDataExchange* pDX)

{

CDialog: : DoDataExchange (pDX)

;

//{ {AE<_DAIA_mP (CPrefDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here

//} }AEX_DAIR_IyRP

}

EEGM_MESSAG£_MAP (CPrefDlg, CDialog)

//{ {AEX_MSG_MAP (CPrefDlg)

CNJEN_CHANa:(irc_EDITl, CnChangeEdit)

CN_EN_CHANC£(IDC_EDIT2, CnChangeEdit)

CN_EN_CHANSE(ICC_EDIT3, CnChangeEdit)

CN_EN_CHRNCE(IDC_EDIT4, CnChangeEdit)

CNEN_CHANGE(IDC_EDIT5, CnChangeEdit)

CN_EN_CHAN3:(IDC_EDIT6, CnChangeEdit)

CN EN CHANGE (IDC EDIT7, CnChangeEdit)

145

www.manaraa.com

//} }AEX_MSG_MAP

END MESSAGE MAPI)

///

// CPrefDlg message handlers

BCOL CPrefDlg: :CnInitDialog()

{

CDialog : :CnlnitDialog ()

;

int i;

CBdit *pBdit;

for (i=0; KMAXDIFS; i++)

{

pEdit = (CBdit *)GetDlgItem(prefID[i]);

pBdit->SetWindoWText((*p01dPFI) [i] .Dir) ;

}

m_bHasChanged = FKLSE;

return TRUE; // return TRUE unless you set the focus to a control

// EXCEPTION: OCX Property Pages should return EALSE

}

void CPrefDlg: :CnChangeEdit()

<

m_hHasChanged = TRUE;

}

void CPrefDlg: :CnCK()

{

int i;

CBdit *pBdit;

for (i=0; i<MAXDD?S; i++)

{

pBdit = (CBdit *)GetDlgItem(prefTD[i]);

pBdit-X3etWindoWText (NewPFT [i] .Dir)

;

}

CDialog: :CnOK();

146

www.manaraa.com

IX. INITIAL DISTRIBUTION LIST

1. Professor H. D. Liess

Universitaet der Bundeswehr Muenchen

85579 Neubiberg

Germany

2. Superintendent

Attn: Library, Code 524

Naval Postgraduate School

Monterey, CA 93943-5101

3. Chairman, (Code SP)

Space Systems Academic Group

Naval Postgraduate School

Monterey, CA 93943-5000

4. Jim Horning, (Code SP)

Space Systems Academic Group

Naval Postgraduate School

Monterey, CA 93943-5000

5. Jens Bartschat

Werner-Heisenberg-Weg 117-17-213

85579 Neubiberg

Germany

6. Praktikantenamt, FB LRT
Universitaet der Bundeswehr Muenchen

85579 Neubiberg

Germany

147

www.manaraa.com

www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY

3 2768 00326238 7

